首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Drosophila Hippo signaling regulates Wts activity to phosphorylate and inhibit Yki in order to control tissue growth. CK2 is widely expressed and involved in a variety of signaling pathways. In this study we report that Drosophila CK2 promotes Wts activity to phosphorylate and inhibit Yki activity, which is independent of Hpo-induced Wts promotion. In vivo, CK2 overexpression suppresses hpo mutant-induced expanded (Ex) up-regulation and overgrowth phenotype, whereas it cannot affect wts mutant. Consistent with this, knockdown of CK2 up-regulates Hpo pathway target expression. We also found that Drosophila CK2 is essential for tissue growth as a cell death inhibitor as knockdown of CK2 in the developing disc induces severe growth defects as well as caspase3 signals. Taken together, our results uncover a dual role of CK2; although its major role is promoting cell survive, it may potentially be a growth inhibitor as well.  相似文献   

3.
4.
5.
6.
7.
Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10–100 μm; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.  相似文献   

8.
9.
10.
The evolutionarily conserved lethal giant larvae (Lgl) tumor suppressor gene has an essential role in establishing apical-basal cell polarity, cell proliferation, differentiation, and tissue organization. However, the precise molecular mechanism by which the Lgl carries out its function remains obscure. In the current study, we have identified Ran-binding protein M (RanBPM) as a novel binding partner of Mgl-1, a mammalian homolog of Drosophila tumor suppressor protein lethal (2) giant larvae (L(2)gl) by yeast two-hybrid screening. RanBPM seems to act as a scaffolding protein with a modulatory function with respect to Mgl-1. The Mgl-1 and RanBPM association was confirmed by co-immunoprecipitation and GST pull-down experiments. Additionally, expression of RanBPM resulted in inhibition of Mgl-1 degradation, and thereby extended the half-life of Mgl-1. Furthermore, the ability of Mgl-1 activity in cell migration and colony formation assay was enhanced by RanBPM. Taken together, our findings reveal that RanBPM plays a novel role in regulating Mgl-1 stability and contributes to its biological function as a tumor suppressor.  相似文献   

11.
12.
13.
14.
15.
16.
17.
The serine/threonine protein kinases Mst1 and Mst2 can be activated by cellular stressors including hydrogen peroxide. Using two independent protein interaction screens, we show that these kinases associate, in an oxidation-dependent manner, with Prdx1, an enzyme that regulates the cellular redox state by reducing hydrogen peroxide to water and oxygen. Mst1 inactivates Prdx1 by phosphorylating it at Thr-90 and Thr-183, leading to accumulation of hydrogen peroxide in cells. These results suggest that hydrogen peroxide-stimulated Mst1 activates a positive feedback loop to sustain an oxidizing cellular state.  相似文献   

18.
Nuclear import of the simian virus 40 large tumor antigen (T-ag) is dependent on its nuclear localization signal (NLS) within amino acids 126–132 that is recognized by the importin α/β1 heterodimer, as well as a protein kinase CK2 site at serine 112 upstream of the NLS, which enhances the interaction ∼50-fold. Here we show for the first time that T-ag nuclear import is negatively regulated by N-terminal sequences (amino acids 102–110), which represent the binding site (BS) for the retinoblastoma (Rb) tumor suppressor protein (p110Rb). Quantitative confocal laser scanning microscopic analysis of the transport properties of T-ag constructs with or without Rb binding site mutations in living transfected cells or in a reconstituted nuclear transport system indicates that the presence of the RbBS significantly reduces nuclear accumulation of T-ag. A number of approaches, including the analysis of T-ag nuclear import in an isogenic cell pair with and without functional p110Rb implicate p110Rb binding as being responsible for the reduced nuclear accumulation, with the Ser106 phosphorylation site within the RbBS appearing to enhance the inhibitory effect. Immunoprecipitation experiments confirmed association of T-ag and p110Rb and dependence thereof on negative charge at Ser106. The involvement of p110Rb in modulating T-ag nuclear transport has implications for the regulation of nuclear import of other proteins from viruses of medical significance that interact with p110Rb, and how this may relate to transformation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号