共查询到20条相似文献,搜索用时 15 毫秒
1.
Jeppe A. Olsen Jette S. Kastrup Dan Peters Michael Gajhede Thomas Balle Philip K. Ahring 《The Journal of biological chemistry》2013,288(50):35997-36006
Positive allosteric modulators (PAMs) of α4β2 nicotinic acetylcholine receptors have the potential to improve cognitive function and alleviate pain. However, only a few selective PAMs of α4β2 receptors have been described limiting both pharmacological understanding and drug-discovery efforts. Here, we describe a novel selective PAM of α4β2 receptors, NS206, and compare with a previously reported PAM, NS9283. Using two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes, NS206 was observed to positively modulate acetylcholine (ACh)-evoked currents at both known α4β2 stoichiometries (2α:3β and 3α:2β). In the presence of NS206, peak current amplitudes surpassed those of maximal efficacious ACh stimulations (Emax(ACh)) with no or limited effects at potencies and current waveforms (as inspected visually). This pharmacological action contrasted with that of NS9283, which only modulated the 3α:2β receptor and acted by left shifting the ACh concentration-response relationship. Interestingly, the two modulators can act simultaneously in an additive manner at 3α:2β receptors, which results in current levels exceeding Emax(ACh) and a left-shifted ACh concentration-response relationship. Through use of chimeric and point-mutated receptors, the binding site of NS206 was linked to the α4-subunit transmembrane domain, whereas binding of NS9283 was shown to be associated with the αα-interface in 3α:2β receptors. Collectively, these data demonstrate the existence of two distinct modulatory sites in α4β2 receptors with unique pharmacological attributes that can act additively. Several allosteric sites have been identified within the family of Cys-loop receptors and with the present data, a detailed picture of allosteric modulatory mechanisms of these important receptors is emerging. 相似文献
2.
López-Hernández GY Biaggi-Labiosa NM Torres-Cintrón A Ortiz-Acevedo A Lasalde-Dominicci JA 《Cellular and molecular neurobiology》2009,29(1):41-53
Phosphorylation of the nicotinic acetylcholine receptor (nAChR) is believed to play a critical role in its nicotine-induced
desensitization and up-regulation. We examined the contribution of a consensus PKC site in the α4 M3/M4 intracellular loop
(α4S336) on the desensitization and up-regulation of α4β2 nAChRs expressed in oocytes. Position α4S336 was replaced with either
alanine to abolish potential phosphorylation at this site or with aspartic acid to mimic phosphorylation at this same site.
Mutations α4S336A and α4S336D displayed a threefold increase in the ACh-induced response and an increase in ACh EC50. Epibatidine binding revealed a three and sevenfold increase in surface expression for the α4S336A and α4S336D mutations,
respectively, relative to wild-type, therefore, both mutations enhanced expression of the α4β2 nAChR. Interestingly, the EC50’s and peak currents for nicotine activation remained unaffected in both mutants. Both mutations abolished the nicotine-induced
up-regulation that is normally observed in the wild-type. The present data suggest that adding or removing a negative charge
at this phosphorylation site cannot be explained by a simple straightforward on-and-off mechanism; rather a more complex mechanism(s)
may govern the functional expression of the α4β2 nAChR. Along the same line, our data support the idea that phosphorylation
at multiple consensus sites in the α4 subunit could play a remarkable role on the regulation of the functional expression
of the α4β2 nAChR. 相似文献
3.
Anne B. Jensen Kirsten Hoestgaard-Jensen Anders A. Jensen 《The Journal of biological chemistry》2013,288(47):33708-33721
Explorations into the α6-containing nicotinic acetylcholine receptors (α6* nAChRs) as putative drug targets have been severely hampered by the inefficient functional expression of the receptors in heterologous expression systems. In this study, the molecular basis for the problem was investigated through the construction of chimeric α6/α3 and mutant α3 and α6 subunits and functional characterization of these co-expressed with β4 or β4β3 subunits in tsA201 cells in a fluorescence-based assay and in Xenopus oocytes using two-electrode voltage clamp electrophysiology. Substitution of a small C-terminal segment in the second intracellular loop or the Phe223 residue in transmembrane helix 1 of α6 with the corresponding α3 segment or residue was found to enhance α6β4 functionality in tsA201 cells significantly, in part due to increased cell surface expression of the receptors. The gain-of-function effects of these substitutions appeared to be additive since incorporation of both α3 elements into α6 resulted in assembly of α6β4* receptors exhibiting robust functional responses to acetylcholine. The pharmacological properties exhibited by α6β4β3 receptors comprising one of these novel α6/α3 chimeras in oocytes were found to be in good agreement with those from previous studies of α6* nAChRs formed from other surrogate α6 subunits or concatenated subunits and studies of other heteromeric nAChRs. In contrast, co-expression of this α6/α3 chimera with β2 or β2β3 subunits in oocytes did not result in efficient formation of functional receptors, indicating that the identified molecular elements in α6 could be specific impediments for the expression of functional α6β4* nAChRs. 相似文献
4.
David D. Mowrey Qiang Liu Vasyl Bondarenko Qiang Chen Edom Seyoum Yan Xu Jie Wu Pei Tang 《The Journal of biological chemistry》2013,288(50):35793-35800
Nicotinic acetylcholine receptors (nAChRs) are targets of general anesthetics, but functional sensitivity to anesthetic inhibition varies dramatically among different subtypes of nAChRs. Potential causes underlying different functional responses to anesthetics remain elusive. Here we show that in contrast to the α7 nAChR, the α7β2 nAChR is highly susceptible to inhibition by the volatile anesthetic isoflurane in electrophysiology measurements. Isoflurane-binding sites in β2 and α7 were found at the extracellular and intracellular end of their respective transmembrane domains using NMR. Functional relevance of the identified β2 site was validated via point mutations and subsequent functional measurements. Consistent with their functional responses to isoflurane, β2 but not α7 showed pronounced dynamics changes, particularly for the channel gate residue Leu-249(9′). These results suggest that anesthetic binding alone is not sufficient to generate functional impact; only those sites that can modulate channel dynamics upon anesthetic binding will produce functional effects. 相似文献
5.
Jingyi Wang Alexander Kuryatov Aarati Sriram Zhuang Jin Theodore M. Kamenecka Paul J. Kenny Jon Lindstrom 《The Journal of biological chemistry》2015,290(22):13907-13918
Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets. 相似文献
6.
Jingyi Wang Alexander Kuryatov Zhuang Jin Jack Norleans Theodore M. Kamenecka Paul J. Kenny Jon Lindstrom 《The Journal of biological chemistry》2015,290(48):28834-28846
Positive allosteric modulators (PAMs) of nicotinic acetylcholine receptors (nAChR) are important therapeutic candidates as well as valuable research tools. We identified a novel type II PAM, (R)-7-bromo-N-(piperidin-3-yl)benzo[b]thiophene-2-carboxamide (Br-PBTC), which both increases activation and reactivates desensitized nAChRs. This compound increases acetylcholine-evoked responses of α2* and α4* nAChRs but is without effect on α3* or α6* nAChRs (* indicates the presence of other nAChR subunits). Br-BPTC acts from the C-terminal extracellular sequences of α4 subunits, which is also a PAM site for steroid hormone estrogens such as 17β-estradiol. Br-PBTC is much more potent than estrogens. Like 17β-estradiol, the non-steroid Br-PBTC only requires one α4 subunit to potentiate nAChR function, and its potentiation is stronger with more α4 subunits. This feature enables Br-BPTC to potentiate activation of (α4β2)(α6β2)β3 but not (α6β2)2β3 nAChRs. Therefore, this compound is potentially useful in vivo for determining functions of different α6* nAChR subtypes. Besides activation, Br-BPTC affects desensitization of nAChRs induced by sustained exposure to agonists. After minutes of exposure to agonists, Br-PBTC reactivated short term desensitized nAChRs that have at least two α4 subunits but not those with only one. Three α4 subunits were required for Br-BPTC to reactivate long term desensitized nAChRs. These data suggest that higher PAM occupancy promotes channel opening more efficiently and overcomes short and long term desensitization. This C-terminal extracellular domain could be a target for developing subtype or state-selective drugs for nAChRs. 相似文献
7.
8.
Susmita Chatterjee Nathan Santos Joan Holgate Carolina L. Haass-Koffler F. Woodward Hopf Viktor Kharazia Henry Lester Antonello Bonci Selena E. Bartlett 《PloS one》2013,8(7)
Human genetic association studies have shown gene variants in the α5 subunit of the neuronal nicotinic receptor (nAChR) influence both ethanol and nicotine dependence. The α5 subunit is an accessory subunit that facilitates α4* nAChRs assembly in vitro. However, it is unknown whether this occurs in the brain, as there are few research tools to adequately address this question. As the α4*-containing nAChRs are highly expressed in the ventral tegmental area (VTA) we assessed the molecular, functional and pharmacological roles of α5 in α4*-containing nAChRs in the VTA. We utilized transgenic mice α5+/+(α4YFP) and α5-/-(α4YFP) that allow the direct visualization and measurement of α4-YFP expression and the effect of the presence (α5+/+) and absence of α5 (-/-) subunit, as the antibodies for detecting the α4* subunits of the nAChR are not specific. We performed voltage clamp electrophysiological experiments to study baseline nicotinic currents in VTA dopaminergic neurons. We show that in the presence of the α5 subunit, the overall expression of α4 subunit is increased significantly by 60% in the VTA. Furthermore, the α5 subunit strengthens baseline nAChR currents, suggesting the increased expression of α4* nAChRs to be likely on the cell surface. While the presence of the α5 subunit blunts the desensitization of nAChRs following nicotine exposure, it does not alter the amount of ethanol potentiation of VTA dopaminergic neurons. Our data demonstrates a major regulatory role for the α5 subunit in both the maintenance of α4*-containing nAChRs expression and in modulating nicotinic currents in VTA dopaminergic neurons. Additionally, the α5α4* nAChR in VTA dopaminergic neurons regulates the effect of nicotine but not ethanol on currents. Together, the data suggest that the α5 subunit is critical for controlling the expression and functional role of a population of α4*-containing nAChRs in the VTA. 相似文献
9.
Justin R. King Jacob C. Nordman Samuel P. Bridges Ming-Kuan Lin Nadine Kabbani 《The Journal of biological chemistry》2015,290(33):20060-20070
α7 nicotinic acetylcholine receptors (nAChRs) play an important role in synaptic transmission and inflammation. In response to ligands, this receptor channel opens to conduct cations into the cell but desensitizes rapidly. In recent studies we show that α7 nAChRs bind signaling proteins such as heterotrimeric GTP-binding proteins (G proteins). Here, we demonstrate that direct coupling of α7 nAChRs to G proteins enables a downstream calcium signaling response that can persist beyond the expected time course of channel activation. This process depends on a G protein-binding cluster (GPBC) in the M3-M4 loop of the receptor. A mutation of the GPBC in the α7 nAChR (α7345–348A) abolishes interaction with Gαq as well as Gβγ while having no effect on receptor synthesis, cell-surface trafficking, or α-bungarotoxin binding. Expression of α7345–348A, however, did significantly attenuate the α7 nAChR-induced Gαq calcium signaling response as evidenced by a decrease in PLC-β activation and IP3R-mediated calcium store release in the presence of the α7 selective agonist choline. Taken together, the data provides new evidence for the existence of a GPBC in nAChRs serving to promote intracellular signaling. 相似文献
10.
Juan L. Brusés 《PloS one》2013,8(4)
Neuronal nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central and peripheral nervous system and are localized at synaptic and extrasynaptic sites of the cell membrane. However, the mechanisms regulating the localization of nicotinic receptors in distinct domains of the cell membrane are not well understood. N-cadherin is a cell adhesion molecule that mediates homotypic binding between apposed cell membranes and regulates the actin cytoskeleton through protein interactions with the cytoplasmic domain. At synaptic contacts, N-cadherin is commonly localized adjacent to the active zone and the postsynaptic density, suggesting that N-cadherin contributes to the assembly of the synaptic complex. To examine whether N-cadherin homotypic binding regulates the cell surface localization of nicotinic receptors, this study used heterologous expression of N-cadherin and α3β4 nAChR subunits C-terminally fused to a myc-tag epitope in Chinese hamster ovary cells. Expression levels of α3β4 nAChRs at cell-cell contacts and at contact-free cell membrane were analyzed by confocal microscopy. α3β4 nAChRs were found distributed over the entire surface of contacting cells lacking N-cadherin. In contrast, N-cadherin-mediated cell-cell contacts were devoid of α3β4 nAChRs. Cell-cell contacts mediated by N-cadherin-deleted proteins lacking the β-catenin binding region or the entire cytoplasmic domain showed control levels of α3β4 nAChRs expression. Inhibition of actin polymerization with latrunculin A and cytochalasin D did not affect α3β4 nAChRs localization within N-cadherin-mediated cell-cell contacts. However, treatment with the Rho associated kinase inhibitor Y27632 resulted in a significant increase in α3β4 nAChR levels within N-cadherin-mediated cell-cell contacts. Analysis of α3β4 nAChRs localization in polarized Caco-2 cells showed specific expression on the apical cell membrane and colocalization with apical F-actin and the actin nucleator Arp3. These results indicate that actomyosin contractility downstream of N-cadherin homotypic binding regulates the cell surface localization of α3β4 nAChRs presumably through interactions with a particular pool of F-actin. 相似文献
11.
Anton A. Grishin Ching-I A. Wang Markus Muttenthaler Paul F. Alewood Richard J. Lewis David J. Adams 《The Journal of biological chemistry》2010,285(29):22254-22263
Non-native disulfide isomers of α-conotoxins are generally inactive although some unexpectedly demonstrate comparable or enhanced bioactivity. The actions of “globular” and “ribbon” isomers of α-conotoxin AuIB have been characterized on α3β4 nicotinic acetylcholine receptors (nAChRs) heterologously expressed in Xenopus oocytes. Using two-electrode voltage clamp recording, we showed that the inhibitory efficacy of the ribbon isomer of AuIB is limited to ∼50%. The maximal inhibition was stoichiometry-dependent because altering α3:β4 RNA injection ratios either increased AuIB(ribbon) efficacy (10α:1β) or completely abolished blockade (1α:10β). In contrast, inhibition by AuIB(globular) was independent of injection ratios. ACh-evoked current amplitude was largest for 1:10 injected oocytes and smallest for the 10:1 ratio. ACh concentration-response curves revealed high (HS, 1:10) and low (LS, 10:1) sensitivity α3β4 nAChRs with corresponding EC50 values of 22.6 and 176.9 μm, respectively. Increasing the agonist concentration antagonized the inhibition of LS α3β4 nAChRs by AuIB(ribbon), whereas inhibition of HS and LS α3β4 nAChRs by AuIB(globular) was unaffected. Inhibition of LS and HS α3β4 nAChRs by AuIB(globular) was insurmountable and independent of membrane potential. Molecular docking simulation suggested that AuIB(globular) is likely to bind to both α3β4 nAChR stoichiometries outside of the ACh-binding pocket, whereas AuIB(ribbon) binds to the classical agonist-binding site of the LS α3β4 nAChR only. In conclusion, the two isomers of AuIB differ in their inhibitory mechanisms such that AuIB(ribbon) inhibits only LS α3β4 nAChRs competitively, whereas AuIB(globular) inhibits α3β4 nAChRs irrespective of receptor stoichiometry, primarily by a non-competitive mechanism. 相似文献
12.
Ying Wang Cheng Xiao Tim Indersmitten Robert Freedman Sherry Leonard Henry A. Lester 《The Journal of biological chemistry》2014,289(38):26451-26463
The α7 nicotinic acetylcholine receptor gene (CHRNA7) is linked to schizophrenia. A partial duplication of CHRNA7 (CHRFAM7A) is found in humans on 15q13–14. Exon 6 of CHRFAM7A harbors a 2-bp deletion polymorphism, CHRFAM7AΔ2bp, which is also associated with schizophrenia. To understand the effects of the duplicated subunits on α7 receptors, we fused α7, dupα7, and dupΔα7 subunits with various fluorescent proteins. The duplicated subunits co-localized with full-length α7 subunits in mouse neuroblastoma cells (Neuro2a) as well as rat hippocampal neurons. We investigated the interaction between the duplicated subunits and full-length α7 by measuring Förster resonance energy transfer using donor recovery after photobleaching and fluorescence lifetime imaging microscopy. The results revealed that the duplicated proteins co-assemble with α7. In electrophysiological studies, Leu at the 9′-position in the M2 membrane-spanning segment was replaced with Cys in dupα7 or dupΔα7, and constructs were co-transfected with full-length α7 in Neuro2a cells. Exposure to ethylammonium methanethiosulfonate inhibited acetylcholine-induced currents, showing that the assembled functional nicotinic acetylcholine receptors (nAChRs) included the duplicated subunit. Incorporation of dupα7 and dupΔα7 subunits modestly changes the sensitivity of receptors to choline and varenicline. Thus, the duplicated proteins are assembled and transported to the cell membrane together with full-length α7 subunits and alter the function of the nAChRs. The characterization of dupα7 and dupΔα7 as well as their influence on α7 nAChRs may help explain the pathophysiology of schizophrenia and may suggest therapeutic strategies. 相似文献
13.
Linda M. Lucero Maegan M. Weltzin J. Brek Eaton John F. Cooper Jon M. Lindstrom Ronald J. Lukas Paul Whiteaker 《The Journal of biological chemistry》2016,291(5):2444-2459
Two α4β2 nicotinic acetylcholine receptor (α4β2-nAChR) isoforms exist with (α4)2(β2)3 and (α4)3(β2)2 subunit stoichiometries and high versus low agonist sensitivities (HS and LS), respectively. Both isoforms contain a pair of α4(+)/(−)β2 agonist-binding sites. The LS isoform also contains a unique α4(+)/(−)α4 site with lower agonist affinity than the α4(+)/(−)β2 sites. However, the relative roles of the conserved α4(+)/(−)β2 agonist-binding sites in and between the isoforms have not been studied. We used a fully linked subunit concatemeric nAChR approach to express pure populations of HS or LS isoform α4β2*-nAChR. This approach also allowed us to mutate individual subunit interfaces, or combinations thereof, on each isoform background. We used this approach to systematically mutate a triplet of β2 subunit (−)-face E-loop residues to their non-conserved α4 subunit counterparts or vice versa (β2HQT and α4VFL, respectively). Mutant-nAChR constructs (and unmodified controls) were expressed in Xenopus oocytes. Acetylcholine concentration-response curves and maximum function were measured using two-electrode voltage clamp electrophysiology. Surface expression was measured with 125I-mAb 295 binding and was used to define function/nAChR. If the α4(+)/(−)β2 sites contribute equally to function, making identical β2HQT substitutions at either site should produce similar functional outcomes. Instead, highly differential outcomes within the HS isoform, and between the two isoforms, were observed. In contrast, α4VFL mutation effects were very similar in all positions of both isoforms. Our results indicate that the identity of subunits neighboring the otherwise equivalent α4(+)/(−)β2 agonist sites modifies their contributions to nAChR activation and that E-loop residues are an important contributor to this neighbor effect. 相似文献
14.
Subtype-selective ligands are important tools for the pharmacological characterisation of neurotransmitter receptors. This is particularly the case for nicotinic acetylcholine receptors (nAChRs), given the heterogeneity of their subunit composition. In addition to agonists and antagonists that interact with the extracellular orthosteric nAChR binding site, a series of nAChR allosteric modulators have been identified that interact with a distinct transmembrane site. Here we report studies conducted with three pharmacologically distinct nicotinic ligands, an orthosteric agonist (compound B), a positive allosteric modulator (TQS) and an allosteric agonist (4BP-TQS). The primary focus of the work described in this study is to examine the suitability of these compounds for the characterisation of native neuronal receptors (both rat and human). However, initial experiments were conducted on recombinant nAChRs demonstrating the selectivity of these three compounds for α7 nAChRs. In patch-clamp recordings on rat primary hippocampal neurons we found that all these compounds displayed pharmacological properties that mimicked closely those observed on recombinant α7 nAChRs. However, it was not possible to detect functional responses with compound B, an orthosteric agonist, using a fluorescent intracellular calcium assay on either rat hippocampal neurons or with human induced pluripotent stem cell-derived neurons (iCell neurons). This is, presumably, due to the rapid desensitisation of α7 nAChR that is induced by orthosteric agonists. In contrast, clear agonist-evoked responses were observed in fluorescence-based assays with the non-desensitising allosteric agonist 4BP-TQS and also when compound B was co-applied with the non-desensitising positive allosteric modulator TQS. In summary, we have demonstrated the suitability of subtype-selective orthosteric and allosteric ligands for the pharmacological identification and characterisation of native nAChRs and the usefulness of ligands that minimise receptor desensitisation for the characterisation of α7 nAChRs in fluorescence-based assays. 相似文献
15.
Sulan Luo Dongting Zhangsun Yong Wu Xiaopeng Zhu Yuanyan Hu Melissa McIntyre Sean Christensen Muharrem Akcan David J. Craik J. Michael McIntosh 《The Journal of biological chemistry》2013,288(2):894-902
α6β2 Nicotinic acetylcholine receptors (nAChRs) expressed by dopaminergic neurons in the CNS are potential therapeutic targets for the treatment of several neuropsychiatric diseases, including nicotine addiction and Parkinson disease. However, recent studies indicate that the α6 subunit can also associate with the β4 subunit to form α6β4 nAChRs that are difficult to pharmacologically distinguish from α6β2, α3β4, and α3β2 subtypes. The current study characterized a novel 16-amino acid α-conotoxin (α-CTx) TxIB from Conus textile whose sequence is GCCSDPPCRNKHPDLC-amide as deduced from gene cloning. The peptide and an analog with an additional C-terminal glycine were chemically synthesized and tested on rat nAChRs heterologously expressed in Xenopus laevis oocytes. α-CTx TxIB blocked α6/α3β2β3 nAChR with an IC50 of 28 nm. In contrast, the peptide showed little or no block of other tested subtypes at concentrations up to 10 μm. The three-dimensional solution structure of α-CTx TxIB was determined using NMR spectroscopy. α-CTx TxIB represents a uniquely selective ligand for probing the structure and function of α6β2 nAChRs. 相似文献
16.
These studies characterized human alpha4beta2 neuronal nicotinic receptors stably expressed in a human epithelial cell line (SH-EP1). Receptors in transfected SH-EPI-halpha4beta2 cells were functional, as determined by increases in intracellular Ca2+ in response to a nicotine stimulus. Nicotine increased Fura-2 fluorescence in a concentration-dependent manner with an apparent EC50 of 2.4 microM, a response that was blocked by the specific antagonist mecamylamine. When cells were incubated in 50 nM nicotine for 24 hours, the Ca2+ response inactivated by 44%, an effect that recovered within 24 hours. SH-EP1-halpha4beta2 cells expressed a single class of high affinity binding sites for [3H]cytisine with a Kd of 0.63 +/- 0.08 nM and a Bmax of 6,797 +/- 732 femtomoles/mg protein. Incubation of cells with 50 nM nicotine for 24 hours increased the Bmax by 45% without changing affinity, a concentration-dependent effect with an EC50, of 58.6 nM. The nicotine-induced up regulation was reversible, and control values were achieved within 24 hours. Results indicate that SH-EPI-halpha4beta2 cells may be a good model system to study regulation of human alpha4beta2 receptors, the most abundant nicotinic receptor subtype in brain. 相似文献
17.
Shiva N. Kompella Andrew Hung Richard J. Clark Frank Marí David J. Adams 《The Journal of biological chemistry》2015,290(2):1039-1048
Activation of the α3β4 nicotinic acetylcholine receptor (nAChR) subtype has recently been implicated in the pathophysiology of various conditions, including development and progression of lung cancer and in nicotine addiction. As selective α3β4 nAChR antagonists, α-conotoxins are valuable tools to evaluate the functional roles of this receptor subtype. We previously reported the discovery of a new α4/7-conotoxin, RegIIA. RegIIA was isolated from Conus regius and inhibits acetylcholine (ACh)-evoked currents mediated by α3β4, α3β2, and α7 nAChR subtypes. The current study used alanine scanning mutagenesis to understand the selectivity profile of RegIIA at the α3β4 nAChR subtype. [N11A] and [N12A] RegIIA analogs exhibited 3-fold more selectivity for the α3β4 than the α3β2 nAChR subtype. We also report synthesis of [N11A,N12A]RegIIA, a selective α3β4 nAChR antagonist (IC50 of 370 nm) that could potentially be used in the treatment of lung cancer and nicotine addiction. Molecular dynamics simulations of RegIIA and [N11A,N12A]RegIIA bound to α3β4 and α3β2 suggest that destabilization of toxin contacts with residues at the principal and complementary faces of α3β2 (α3-Tyr92, Ser149, Tyr189, Cys192, and Tyr196; β2-Trp57, Arg81, and Phe119) may form the molecular basis for the selectivity shift. 相似文献
18.
Alpha crystallin is an eye lens protein with a molecular weight of approximately 800 kDa. It belongs to the class of small heat shock proteins. Besides its structural role, it is known to prevent the aggregation of β- and γ-crystallins and several other proteins under denaturing conditions and is thus believed to play an important role in maintaining lens transparency. In this communication, we have investigated the effect of 2,2,2-trifluoroethanol (TFE) on the structural and functional features of the native α-crystallin and its two constituent subunits. A conformational change occurs from the characteristic β-sheet to the α-helix structure in both native α-crystallin and its subunits with the increase in TFE levels. Among the two subunits, αA-crystallin is relatively stable and upon preincubation prevents the characteristic aggregation of αB-crystallin at 20% and 30% (v/v) TFE. The hydrophobicity and chaperone-like activity of the crystallin subunits decrease on TFE treatment. The ability of αA-crystallin to bind and prevent the aggregation of αB-crystallin, despite a conformational change, could be important in protecting the lens from external stress. The loss in chaperone activity of αA-crystallin exposed to TFE and the inability of peptide chaperone—the functional site of αA-crystallin—to stabilize αB-crystallin at 20–30% TFE suggest that the site(s) involved in subunit interaction and chaperone-like function are quite distinct. 相似文献
19.
Jie Yin Lei Li Neil Shaw Yang Li Jing Katherine Song Wenpeng Zhang Chengfeng Xia Rongguang Zhang Andrzej Joachimiak Hou-Cheng Zhang Lai-Xi Wang Zhi-Jie Liu Peng Wang 《PloS one》2009,4(3)
Endo-β-N-acetylglucosaminidases (ENGases) are dual specificity enzymes with an ability to catalyze hydrolysis and transglycosylation reactions. Recently, these enzymes have become the focus of intense research because of their potential for synthesis of glycopeptides. We have determined the 3D structures of an ENGase from Arthrobacter protophormiae (Endo-A) in 3 forms, one in native form, one in complex with Man3GlcNAc-thiazoline and another in complex with GlcNAc-Asn. The carbohydrate moiety sits above the TIM-barrel in a cleft region surrounded by aromatic residues. The conserved essential catalytic residues – E173, N171 and Y205 are within hydrogen bonding distance of the substrate. W216 and W244 regulate access to the active site during transglycosylation by serving as “gate-keepers”. Interestingly, Y299F mutation resulted in a 3 fold increase in the transglycosylation activity. The structure provides insights into the catalytic mechanism of GH85 family of glycoside hydrolases at molecular level and could assist rational engineering of ENGases. 相似文献
20.
Andrew M. Davenport Leslie N. Collins Hui Chiu Paul J. Minor Paul W. Sternberg André Hoelz 《Journal of molecular biology》2014
Tubulin protomers undergo an extensive array of post-translational modifications to tailor microtubules to specific tasks. One such modification, the acetylation of lysine 40 of α-tubulin, located in the lumen of microtubules, is associated with stable, long-living microtubule structures. MEC-17 was recently identified as the acetyltransferase that mediates this event. We have determined the crystal structure of the catalytic core of human MEC-17 in complex with its cofactor acetyl-CoA at 1.7 Å resolution. The structure reveals that the MEC-17 core adopts a canonical Gcn5-related N-acetyltransferase (GNAT) fold that is decorated with extensive surface loops. An enzymatic analysis of 33 MEC-17 surface mutants identifies hot-spot residues for catalysis and substrate recognition. A large, evolutionarily conserved hydrophobic surface patch that is critical for enzymatic activity is identified, suggesting that specificity is achieved by interactions with the α-tubulin substrate that extend outside of the modified surface loop. An analysis of MEC-17 mutants in Caenorhabditis elegans shows that enzymatic activity is dispensable for touch sensitivity. 相似文献