首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Glioma is the most common form of primary brain tumor. Demographically, the risk of occurrence increases until old age. Here we present a novel computational model to reproduce the probability of glioma incidence across the lifespan. Previous mathematical models explaining glioma incidence are framed in a rather abstract way, and do not directly relate to empirical findings. To decrease this gap between theory and experimental observations, we incorporate recent data on cellular and molecular factors underlying gliomagenesis. Since evidence implicates the adult neural stem cell as the likely cell-of-origin of glioma, we have incorporated empirically-determined estimates of neural stem cell number, cell division rate, mutation rate and oncogenic potential into our model. We demonstrate that our model yields results which match actual demographic data in the human population. In particular, this model accounts for the observed peak incidence of glioma at approximately 80 years of age, without the need to assert differential susceptibility throughout the population. Overall, our model supports the hypothesis that glioma is caused by randomly-occurring oncogenic mutations within the neural stem cell population. Based on this model, we assess the influence of the (experimentally indicated) decrease in the number of neural stem cells and increase of cell division rate during aging. Our model provides multiple testable predictions, and suggests that different temporal sequences of oncogenic mutations can lead to tumorigenesis. Finally, we conclude that four or five oncogenic mutations are sufficient for the formation of glioma.  相似文献   

8.
9.
吴志强  米泽云 《遗传》2019,(1):41-51
超级增强子是由多个相邻近的普通增强子组成的、驱动调控细胞身份基因表达的一个大簇,该区域富集高密度的转录因子、辅因子及增强子相关表观修饰。超级增强子所驱动的异常转录基因对维持肿瘤细胞特性至关重要。肿瘤细胞通过组装自身超级增强子,显著促进多种癌基因表达,从而增强肿瘤细胞的增殖、侵袭和转移的能力;抑制超级增强子的活性,则显著抑制肿瘤细胞的生长和存活。本文对目前报道的肿瘤细胞中超级增强子的结构特征和功能调控,以及靶向超级增强子药物研发现状进行了总结,旨在为研发新的针对超级增强子为靶点的抗肿瘤药物提供理论基础和借鉴。  相似文献   

10.
Super enhancers (SEs) are broad enhancer domains usually containing multiple constituent enhancers that hold elevated activities in gene regulation. Disruption in one or more constituent enhancers causes aberrant SE activities that lead to gene dysregulation in diseases. To quantify SE aberrations, differential analysis is performed to compare SE activities between cell conditions. The state-of-art strategy in estimating differential SEs relies on overall activities and neglect the changes in length and structure of SEs. Here, we propose a novel computational method to identify differential SEs by weighting the combinatorial effects of constituent-enhancer activities and locations (i.e. internal dynamics). In addition to overall activity changes, our method identified four novel classes of differential SEs with distinct enhancer structural alterations. We demonstrate that these structure alterations hold distinct regulatory impact, such as regulating different number of genes and modulating gene expression with different strengths, highlighting the differentiated regulatory roles of these unexplored SE features. When compared to the existing method, our method showed improved identification of differential SEs that were linked to better discernment of cell-type-specific SE activity and functional interpretation.  相似文献   

11.
Numerous studies have reported that long noncoding RNA (lncRNA) dysregulation is involved in the progression of many malignant tumors, including glioma. The lncRNA ZNFX1 antisense RNA 1 (ZFAS1) plays an oncogenic role in various malignant tumors, such as gastric cancer and hepatocellular carcinoma. However, the underlying molecular mechanism of ZFAS1 in glioma has not been fully clarified. In this study, we found that the expression of ZFAS1 was upregulated in both glioma tissues and cell lines. Functional experiments revealed that ZFAS1 promoted glioma proliferation, migration and invasion, and increased resistance to temozolomide in vitro. By using online databases, RNA pull-down assays and luciferase reporter assays, ZFAS1 was demonstrated to act as a sponge of miR-150-5p. Furthermore, proteolipid protein 2 (PLP2) was shown to be the functional target of miR-150-5p. Rescue experiments revealed that ZFAS1 regulated the expression of PLP2 by sponging miR-150-5p. Finally, a xenograft tumor assay demonstrated that ZFAS1 promoted glioma growth in vivo. Our results showed that ZFAS1 promoted glioma malignant progression by regulating the miR-150-5p/PLP2 axis, which may provide a potential therapeutic target for the treatment of glioma.  相似文献   

12.
Tumor heterogeneity: morphological, molecular and clinical implications   总被引:3,自引:0,他引:3  
Malignant tumors are characterized by their great heterogeneity and variability. There are hundreds of different types of malignant tumors that harbour many oncogenic alterations. The tumor heterogeneity has important morphological, molecular and clinical implications. Except for some hematopoietic and lymphoproliferative processes and small cell infant tumors, there are not specific molecular alterations for most human tumors. In this review we summarize the most important aspects of carcinogenesis and chemoradiosensitivity of malignant cells. In this regard, some oncogenes such as neu, ras and bcl-2 have been associated with cellular resistance to treatment with anticancer agents. The knowledge of oncogenic alterations involved in each tumor can be important to correlate the morphological features, the genetic background, the prognosis and the clinical response to treatment with anticancer agents. Based on the molecular background of the tumor there are new cancer gene therapy protocols. For example using adenovirus Ela in tumors with overexpression of neu oncogene, inhibitors of tyrosine kinase specific for the PDGF receptor in glioma, inhibitors of farnesil transferase to prevent ras activity in tumors with mutations in the ras gene.  相似文献   

13.
Summary After chemical fixation following two different preparation procedures, the ultrastructure of mature sieve elements (SEs) was systematically compared in the transport phloem ofVicia faba leaves andLycopersicon esculentum internodes. The SEs in samples obtained by gentle preparation were well preserved, while those in conventionally prepared samples were generally injured. (1) In well-preserved SEs, parietal P-proteins were associated with cisternae of the SE endoplasmic reticulum (ER). Additionally, theV. faba SEs had crystalline P-proteins, and a homogeneous network of filamentous P-proteins occurred in the lumen of theL. esculentum SEs. In injured SEs, all P-proteins were dispersed. (2) In well-preserved SEs, stacked ER cisternae associated with P-proteins lay also on the sieve-plate walls, but passages were kept free in front of the sieve pores. Injured SEs lacked these orderly arranged deposits. Instead, irregular filamentous and membranous materials occluded the sieve pores. (3) In well-preserved SEs, the sieve-pore lumen was free of obstructions, apart from small, lateral coatings of P-proteins. Sieve pores in injured SEs were always occluded. (4) The SE organelles and, in tomato SEs, also the parietal ER located at the longitudinal walls were firmly attached in the SE periphery and stayed in place after injury. The stable parietal attachment is likely exerted by minute, clamplike structures which link the outer membranes of the SE components with one another or to the SE plasma membrane. Single, straight clamps with a length of about 7 nm anchored the SE components directly to the SE plasma membrane. The connections between adjacent SE organelles and/or parietal ER cisternae were mostly twice as long (about 15 nm) and often were branched. Presumably, the long, branched clamps were constituted by the interaction of opposite short clamps. The ultrastructural results are discussed with respect to SE functioning.  相似文献   

14.
Human glioma causes substantial morbidity and mortality worldwide. However, the molecular mechanisms underlying glioma progression are still largely unknown. COP1 (constitutively photomorphogenic 1), an E3 ubiquitin ligase, is important in cell survival, development, cell growth, and cancer biology by regulating different substrates. As is well known, both tumor suppressor p53 and oncogenic protein c-JUN could be ubiquitinated and degraded by ubiquitin ligase COP1, which may be the reason that COP1 serves as an oncogene or a tumor suppressor in different cancer types. Up to now, the possible role of COP1 in human glioma is still unclear. In the present study, we found that the expression of COP1 was upregulated in human glioma tissues. The role of COP1 in glioma cell proliferation was investigated using COP1 loss- and gain-of-function. The results showed that downregulation of COP1 by short hairpin RNA (shRNA) inhibited glioma cell proliferation, while overexpression of COP1 significantly promoted it. Furthermore, we demonstrated that COP1 only interacted with and regulated p53, but not c-JUN. Taken together, these results indicate that COP1 may play a role in promoting glioma cell proliferation by interacting with and downregulating tumor suppressor p53 rather than oncogenic protein c-JUN.  相似文献   

15.
16.
17.
18.
Many bacterial pathogens employ a type III secretion system to deliver type III secreted effectors (T3SEs) into host cells, where they interact directly with host substrates to modulate defense pathways and promote disease. This interaction creates intense selective pressures on these secreted effectors, necessitating rapid evolution to overcome host surveillance systems and defenses. Using computational and evolutionary approaches, we have identified numerous mosaic and truncated T3SEs among animal and plant pathogens. We propose that these secreted virulence genes have evolved through a shuffling process we have called "terminal reassortment." In terminal reassortment, existing T3SE termini are mobilized within the genome, creating random genetic fusions that result in chimeric genes. Up to 32% of T3SE families in species with relatively large and well-characterized T3SE repertoires show evidence of terminal reassortment, as compared to only 7% of non-T3SE families. Terminal reassortment may permit the near instantaneous evolution of new T3SEs and appears responsible for major modifications to effector activity and function. Because this process plays a more significant role in the evolution of T3SEs than non-effectors, it provides insight into the evolutionary origins of T3SEs and may also help explain the rapid emergence of new infectious agents.  相似文献   

19.
Paradoxically, aging leads to both decreased regenerative capacity in the brain and an increased risk of tumorigenesis, particularly the most common adult‐onset brain tumor, glioma. A shared factor contributing to both phenomena is thought to be age‐related alterations in neural progenitor cells (NPCs), which function normally to produce new neurons and glia, but are also considered likely cells of origin for malignant glioma. Upon oncogenic transformation, cells acquire characteristics known as the hallmarks of cancer, including unlimited replication, altered responses to growth and anti‐growth factors, increased capacity for angiogenesis, potential for invasion, genetic instability, apoptotic evasion, escape from immune surveillance, and an adaptive metabolic phenotype. The precise molecular pathogenesis and temporal acquisition of these malignant characteristics is largely a mystery. Recent studies characterizing NPCs during normal aging, however, have begun to elucidate mechanisms underlying the age‐associated increase in their malignant potential. Aging cells are dependent upon multiple compensatory pathways to maintain cell cycle control, normal niche interactions, genetic stability, programmed cell death, and oxidative metabolism. A few multi‐functional proteins act as ‘critical nodes’ in the coordination of these various cellular activities, although both intracellular signaling and elements within the brain environment are critical to maintaining a balance between senescence and tumorigenesis. Here, we provide an overview of recent progress in our understanding of how mechanisms underlying cellular aging inform on glioma pathogenesis and malignancy.  相似文献   

20.
Autophagy is a membrane-trafficking process that delivers cytoplasmic constituents to lysosomes for degradation. It contributes to energy and organelle homeostasis and the preservation of proteome and genome integrity. Although a role in cancer is unquestionable, there are conflicting reports that autophagy can be both oncogenic and tumor suppressive, perhaps indicating that autophagy has different roles at different stages of tumor development. In this report, we address the role of autophagy in a critical stage of cancer progression—tumor cell invasion. Using a glioma cell line containing an inducible shRNA that targets the essential autophagy gene Atg12, we show that autophagy inhibition does not affect cell viability, proliferation or migration but significantly reduces cellular invasion in a 3D organotypic model. These data indicate that autophagy may play a critical role in the benign to malignant transition that is also central to the initiation of metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号