首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
2.
3.
Homeobox (HOX) genes control axial specification during mammalian development and also regulate skin morphogenesis. Although selected HOX genes are variably expressed in leukemias and kidney and colon cancer cell lines, their relationship with the neoplastic phenotype remains unclear. In both normal development and neoplastic transformation, HOX target genes are largely unknown. We investigated the expression and function of HOXB cluster genes in human melanoma. The HOXB7 gene was constitutively expressed in all 25 melanoma cell lines and analyzed under both normal and serum-starved conditions, as well as in in vivo primary and metastatic melanoma cells; conversely, HOXB7 was expressed in proliferating but not quiescent normal melanocytes. Treatment of melanoma cell lines with antisense oligomers targeting HOXB7 mRNA markedly inhibited cell proliferation and specifically abolished expression of basic fibroblast growth factor (bFGF) mRNA. Band shift and cotransfection experiments showed that HOXB7 directly transactivates the hFGF gene through one out of five putative homeodomain binding sites present in its promoter. These novel findings indicate a key role for constitutive HOXB7 expression in melanoma cell proliferation via bFGF. The results also raise the possibility that growth factor genes are critical HOX target genes in other developmental and/or neoplastic cell systems.  相似文献   

4.
We aimed to discover cell line-specific overexpressed HOX genes responsible for chemoresistance and to identify the mechanisms behind HOX-induced cell line-specific chemoresistance in EOC. Ten HOX genes and eight EOC cell lines were tested for any cell line-specific overexpression that presents a mutually exclusive pattern. Cell viability was evaluated after treatment with cisplatin and/or siRNA for cell line-specific overexpressed HOX genes. Immunohistochemical (IHC) staining for HOXB9 was performed in 84 human EOC tissues. HOXA10 and HOXB9 were identified as cell line-specific overexpressed HOX genes for SKOV-3 and RMUG-S, respectively. Inhibiting the expression of cell line-specific HOX genes, but not of other HOX genes, significantly decreased cell viability. In SKOV-3 cells, cell viability decreased to 46.5% after initial 10 µM cisplatin treatment; however, there was no further decrease upon additional treatment with HOXA10 siRNA. In contrast, cell viability did not significantly decrease upon cisplatin treatment in RMUG-S cells, but decreased to 65.5% after additional treatment with HOXB9 siRNA. In both cell lines, inhibiting cell line-specific HOX expression enhanced apoptosis but suppressed the expression of epithelial-mesenchymal transition (EMT) markers such as vimentin, MMP9, and Oct4. IHC analysis showed that platinum-resistant cancer tissues more frequently had high HOXB9 expression than platinum-sensitive cancer tissues. HOXB9, which is overexpressed in RMUG-S but not in SKOV-3 cells, appeared to be associated with cell line-specific platinum resistance in RMUG-S. Inhibiting HOXB9 overexpression in RMUG-S cells may effectively eliminate platinum-resistant ovarian cancer cells by facilitating apoptosis and inhibiting EMT.  相似文献   

5.
Previously we have demonstrated a reciprocal deregulation of various homeobox genes (HOXB6, B8, C8 and C9 vs Cdx-1) in human colorectal cancer (CRC). In the present study, using RT-PCR, we have investigated the expression pattern of these homeobox genes in various human colon cell lines, representing various stages of colon cancer progression and differentiation. Thus, we have tested polyposis coli Pc/AA adenoma cells, Caco-2, HT-29 and LS174T adenocarcinoma cell lines. All cell lines, except LS174T, demonstrated a pattern of deregulated homeobox gene expression which resembled that of CRC. In contrast, the pattern of expression of these genes in the highly oncogenic LS174T cells, as well as in Caco-2 cells transfected with activated Ha-ras or Polyoma middle T oncogene, resembled that of the normal mucosa. The reciprocal deregulation of HOX and Cdx-1 genes in CRC and in CRC-derived cell lines suggests a possible role in human CRC development.  相似文献   

6.
The protein kinase C (PKC) family of serine/threonine kinases has been intensively studied in cancer since their discovery as major receptors for the tumor-promoting phorbol esters. The contribution of each individual PKC isozyme to malignant transformation is only partially understood, but it is clear that each PKC plays different role in cancer progression. PKC deregulation is a common phenomenon observed in breast cancer, and PKC expression and localization are usually dynamically regulated during mammary gland differentiation and involution. In fact, the overexpression of several PKCs has been reported in malignant human breast tissue and breast cancer cell lines. In this review, we summarize the knowledge available on the specific roles of PKC isoforms in the development, progression, and metastatic dissemination of mammary cancer. We also discuss the role of PKC isoforms as therapeutic targets, and their potential as markers for prognosis or treatment response.  相似文献   

7.
8.
Breast cancer is the most common malignancy in women continuing to rise worldwide. Breast cancer emerges through a multi-step process, encompassing progressive changes from a normal cell to hyperplasia (with and without atypia), carcinoma in situ, invasive carcinoma, and metastasis. In the current study, we analyzed the morphological changes and alterations of DNA methylation, histone methylation and microRNA expression during estradiol-17β (E2)-induced mammary carcinogenesis in female August Copenhagen Irish (ACI) rats. E2-induced breast carcinogenesis in ACI rats provides a physiologically relevant and genetically defined animal model for studying human sporadic breast cancer. The pattern of morphological changes in mammary glands during E2-induced carcinogenesis was characterized by transition from normal appearing alveolar and ductular hyperplasia to focal hyperplastic areas of atypical glands and ducts accompanied by a rapid and sustained loss of global DNA methylation, LINE-1 hypomethylation, loss of histone H3 lysine 9 and histone H4 lysine 20 trimethylation, and altered microRNAs expression. More importantly, these alterations in the mammary tissue occurred after 6 weeks of E2-treatment, whereas the atypical hyperplasia, which represents a putative precursor lesion to mammary carcinoma in this model, was detected only after 12 weeks of exposure, demonstrating clearly that these events are directly associated with the effects of E2 and are not a consequence of the preexisting preneoplastic lesions. The results of this study show that deregulation of cellular epigenetic processes plays a crucial role in the mechanism of E2-induced mammary carcinogenesis in ACI rats, especially in the tumor initiation process.  相似文献   

9.
Deregulated expression of several cell cycle regulatory genes has been demonstrated to be associated with cancer. In particular, a strong correlation has been established between inappropriate cyclin E expression and human breast cancer. To determine the ability of cyclin E to play a causative role in mammary tumorigenesis, regulatory sequences from the ovine beta-lactoglobulin gene were utilized to specifically target expression of human cyclin E to the mammary glands of pregnant and lactating mice. Lactating mammary glands of transgenic mice expressing cyclin E contained areas of hyperplasia, primarily papillary projections of hyperplastic cells, which were rarely observed in lactating glands of control mice. Over 10% of female cyclin E transgenic mice have developed mammary carcinomas, with latencies ranging from 8 to 13 months. Tumor analysis revealed the presence of transgene-specific cyclin E RNA and protein, as well as cyclin E- and cdk2-associated kinase activity, suggesting that cyclin E is likely a contributing component of tumorigenic progression in this model system.  相似文献   

10.
Mouse models of breast cancer are traditionally made by introducing genetic alterations to the entire mammary epithelium using transgenic or knockout approaches. In contrast, we have adapted the RCAS-TVA method to introduce genes into a small subset of somatic mammary cells in developmentally normal mammary glands. This new method allows the testing of the carcinogenic potential of candidate oncogenes in vivo without the need to create individual transgenic lines. Moreover, since models created by this approach closely recapitulate evolution of human breast cancer, they may help understand human breast cancer initiation and progression, and may be useful for preclinical testing of therapeutic compounds. Finally, this approach may provide an opportunity to target oncogenes into mammary cells at different differentiation stages, providing a tool to study the relationship between cell origin and cancer phenotype.  相似文献   

11.

Background

In human breast cancer normal mammary cells typically develop into hyperplasia, ductal carcinoma in situ, invasive cancer, and metastasis. The changes in gene expression associated with this stepwise progression are unclear. Mice transgenic for mouse mammary tumor virus (MMTV)-Wnt-1 exhibit discrete steps of mammary tumorigenesis, including hyperplasia, invasive ductal carcinoma, and distant metastasis. These mice might therefore be useful models for discovering changes in gene expression during cancer development.

Results

We used cDNA microarrays to determine the expression profiles of five normal mammary glands, seven hyperplastic mammary glands and 23 mammary tumors from MMTV-Wnt-1 transgenic mice, and 12 mammary tumors from MMTV-Neu transgenic mice. Adipose tissues were used to control for fat cells in the vicinity of the mammary glands. In these analyses, we found that the progression of normal virgin mammary glands to hyperplastic tissues and to mammary tumors is accompanied by differences in the expression of several hundred genes at each step. Some of these differences appear to be unique to the effects of Wnt signaling; others seem to be common to tumors induced by both Neu and Wnt-1 oncogenes.

Conclusion

We described gene-expression patterns associated with breast-cancer development in mice, and identified genes that may be significant targets for oncogenic events. The expression data developed provide a resource for illuminating the molecular mechanisms involved in breast cancer development, especially through the identification of genes that are critical in cancer initiation and progression.  相似文献   

12.
13.
Emerging data suggest that metastasis-associated protein 1 (MTA1) represses ligand-dependent transactivation functions of estrogen receptor-alpha in cultured breast cancer cells and that MTA1 is upregulated in human breast tumors. However, the role of MTA1 in tumorigenesis in a physiologically relevant animal system remains unknown. To reveal the role of MTA1 in mammary gland development, transgenic mice expressing MTA1 under the control of the mouse mammary tumor virus promoter long terminal repeat were generated. Unexpectedly, we found that mammary glands of these virgin transgenic mice exhibited extensive side branching and precocious differentiation because of increased proliferation of ductal and alveolar epithelial cells. Mammary glands of virgin transgenic mice resemble those from wild-type mice in mid-pregnancy and inappropriately express beta-casein, cyclin D1 and beta-catenin protein. Increased ductal growth was also observed in the glands of ovariectomized female mice, as well as of transgenic male mice. MTA1 dysregulation in mammary epithelium and cancer cells triggered downregulation of the progesterone receptor-B isoform and upregulation of the progesterone receptor-A isoform, resulting in an imbalance in the native ratio of progesterone receptor A and B isoforms. MTA1 transgene also increased the expression of progesterone receptor-A target genes Bcl-XL (Bcl2l1) and cyclin D1 in mammary gland of virgin mice, and, subsequently, produced a delayed involution. Remarkably, 30% of MTA1 transgenic females developed focal hyperplastic nodules, and about 7% exhibited mammary tumors within 18 months. These studies establish, for the first time, a potential role of MTA1 in mammary gland development and tumorigenesis. The underlying mechanism involves the upregulation of progesterone receptor A and its targets, Bcl-XL and cyclin D1.  相似文献   

14.
15.
16.
17.
编码转录因子的同源异形盒(homeobox,HOX)基因在染色体上串联成簇排列,是生物发育中决定身体节段边界的重要基因.HOX在机体不同部位有相应的表达模式,同时HOX的表达也包含着成体细胞的位置信息.HOX基因在癌症发生发展中起重要作用,在白血病中的研究一直以来都受到关注,近年来HOX在肺癌、胃肠道肿瘤、前列腺癌、乳腺癌和卵巢癌等实体瘤中的研究也成为新的热点.HOX基因的表达调控、细胞学功能和转录活性的研究对阐明HOX在癌症中的作用具有重要意义.  相似文献   

18.
19.
20.
Most physiological and biological processes are regulated by endogenous circadian rhythms under the control of both a master clock, which acts systemically and individual cellular clocks, which act at the single cell level. The cellular clock is based on a network of core clock genes, which drive the circadian expression of non-clock genes involved in many cellular processes. Circadian deregulation of gene expression has emerged to be as important as deregulation of estrogen signaling in breast tumorigenesis. Whether there is a mutual deregulation of circadian and hormone signaling is the question that we address in this study. Here we show that, upon entrainment by serum shock, cultured human mammary epithelial cells maintain an inner circadian oscillator, with key clock genes oscillating in a circadian fashion. In the same cells, the expression of the estrogen receptor α (ERA) gene also oscillates in a circadian fashion. In contrast, ERA-positive and -negative breast cancer epithelial cells show disruption of the inner clock. Further, ERA-positive breast cancer cells do not display circadian oscillation of ERA expression. Our findings suggest that estrogen signaling could be affected not only in ERA-negative breast cancer, but also in ERA-positive breast cancer due to lack of circadian availability of ERA. Entrainment of the inner clock of breast epithelial cells, by taking into consideration the biological time component, provides a novel tool to test mechanistically whether defective circadian mechanisms can affect hormone signaling relevant to breast cancer.Key words: circadian rhythm, clock genes, estrogen receptor alpha (ERA), breast cancer cells, entrainment, serum shock  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号