首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

The pollution of raw surface and underground water with pharmaceutical compounds has an impact on increasing the resistance of pathogenic microorganisms. Environmental challenges include investigating a novel and cost-effective therapeutic approach for the bactericidal treatment of water supplies. Ethyl acetate extracts from three marine algae (Caulerpa racemosa, Codium fragile, and Cystoseira myrica) obtained from the Red Sea (Hurghada, Egypt) were used for the green synthesis of TiO2 nanoparticles (TiO2-NPs). A highly crystalline nanoparticle structure with a stable tetragonal anatase structure was obtained; the mean concentrations were 2.43 to 6.09?×?108 NPs/mL and the average particle size was 125–131 nm. In ultrapure water, the TiO2-NPs were confirmed to be a stable solution following zeta potential analysis. UV light (λ?=?350 nm) for 2 h was used to activate the TiO2-NPs before the antibacterial activity tests. The application of UV-activated TiO2-NPs for 4 h treatments demonstrated promising bactericidal activity, with a 73.08% reduction in Salmonella typhi and a 91.51% reduction in Enterobacter ludwigii. Antibiofilm activities against the reference strains Salmonella typhi NCTC 12023/ATTC and Morganella morganii ATCC25829 and the bacterial isolates Klebsiella pneumoniae, Enterobacter ludwigii, and Enterococcus faecium were tested. The TiO2-NPs were nontoxic against the human normal cell line RPE1. Regarding the treatment of total and fecal coliform, in addition to fecal streptococci, in raw surface and underground water, the UV-activated TiO2-NPs prepared from the ethyl acetate extracts of Caulerpa racemosa showed high applicability. The present study offered insights into the nature and development of nontoxic and green TiO2-NP formulations for use as modern antibacterial alternatives against coliforms in aquatic systems.

  相似文献   

2.
We evaluated the effects of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles (NPs) preilluminated with ultraviolet light on Escherichia coli and Bacillus subtilis. The experiments were conducted using three different types of light: visible, Ultraviolet A (UVA, 315–400 nm), and Ultraviolet B (UVB, 280–315 nm). The bacteria were exposed to NPs, either as liquid suspensions for growth inhibition assays or on agar plates for colony forming unit (CFU) assays. We found that the ZnO NPs were more toxic when preilluminated with UVA or UVB light than with visible light in both growth inhibition and CFU assays. TiO2 NPs were not toxic to the bacteria under UVA or UVB preillumination conditions. The photo-dissolution of ZnO NPs increased with UV preillumination, which could explain the observed toxicity of ZnO NPs. We detected oxidative stress elicited by photoactive nanoparticles by measuring superoxide dismutase activity. The results of this study show that the toxicity of photoactive nanoparticles can be increased by UV preillumination by dissolution of toxic ions, which suggests the potential for preillumination-dependent toxicity of nanoparticles on soil environments in low light or darkness.  相似文献   

3.
PurposeTitanium dioxide nanoparticles (TiO2 NPs) have been investigated for their role as radiosensitisers for radiation therapy. The study aims to increase the efficiency of these NPs by synthesising them with samarium.MethodsSamarium-doped TiO2 NPs (Ti(Sm)O2 NPs) were synthesised using a solvothermal method. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS) were performed for characterising of the Ti(Sm)O2 NPs. The intracellular uptake and cytotoxicity were assessed in vitro using A549 and DU145 cancer cell lines. Furthermore, the effect of dose enhancement and generation of reactive oxygen species (ROS) in response to 6 MV X-rays was evaluated. Additionally, the image contrast properties were investigated using computed tomography (CT) images.ResultsThe synthesised Ti(Sm)O2 NPs were about 13 nm in diameter as determined by TEM. The XRD pattern of Ti(Sm)O2 NPs was consistent with that of anatase-type TiO2. EDS confirmed the presence of samarium in the nanoparticles. At 200 μg/ml concentration, no differences in cellular uptake and cytotoxicity were observed between TiO2 NPs and Ti(Sm)O2 NPs in both A549 and DU145 cells. However, the combination of Ti(Sm)O2 NPs and X-rays elicited higher cytotoxic effect and ROS generation in the cells than that with TiO2 NPs and X-rays. The CT numbers of Ti(Sm)O2 NPs were systematically higher than that of TiO2 NPs.ConclusionsThe Ti(Sm)O2 NPs increased the dose enhancement of MV X-ray beams than that elicited by TiO2 NPs. Samarium improved the efficiency of TiO2 NPs as potential radiosensitising agent.  相似文献   

4.
《Journal of Asia》2023,26(1):102027
The excessive application of pesticides raises environmental pollution levels, necessitating the need to identify alternative substances that do not cause ecological damage. In this context, the toxicity and residual efficacy of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) compared to abamectin against adult females of T. urticae was evaluated under laboratory and greenhouse conditions. In addition, the effects of tested NPs on the biological parameters of T. urticae as well as their side effects on the predatory mite, Neoseiulus californicus were examined. In laboratory bioassays, LC50 values of TiO2 and ZnO NPs were 5.82 and 7.09 mg L–1, respectively, compared to 4.90 mg L–1 in abamectin 72 hr post-treatment. TiO2 and ZnO NPs had a prolongation effect on both the developmental and reproductive durations with mean life spans of 33.18 ± 0.72 days and 30.53 ± 0.82 days in the case of TiO2 and ZnO NPs, respectively, compared to 24.65 ± 0.53 days in the normal case. Treated T. urticae females produced lesser fecundities (10–22 eggs less than the normal mean) and decreased hatchability rates. The highest mortality percentages in T. urticae populations were 92.4 % and 90.0 % after 24 h of spraying with TiO2 and ZnO NPs, respectively, compared to 98.4 % in abamectin. In contrast, tested NPs demonstrated less toxicity in N. californicus populations with no phytotoxicity on treated leaves. This study is the first in Egypt to investigate the NPs control of T. urticae mites infesting cucumber plants and the effects on their biology and natural enemies.  相似文献   

5.
Titanium dioxide nanoparticles (TiO2-NPs) interaction with human serum albumin (HSA) and DNA was studied by UV–visible spectroscopy, spectrofluorescence, circular dichroism (CD), and transmission electron microscopy (TEM) to analyze the binding parameters and protein corona formation. TEM revealed protein corona formation on TiO2-NPs surface due to adsorption of HSA. Intrinsic fluorescence quenching data suggested significant binding of TiO2-NPs (avg. size 14.0 nm) with HSA. The Stern–Volmer constant (Ksv) was determined to be 7.6 × 102 M?1 (r2 = 0.98), whereas the binding constant (Ka) and number of binding sites (n) were assessed to be 5.82 × 102 M?1 and 0.97, respectively. Synchronous fluorescence revealed an apparent decrease in fluorescence intensity with a red shift of 2 nm at Δλ = 15 nm and Δλ = 60 nm. UV–visible analysis also provided the binding constant values for TiO2-NPs–HSA and TiO2-NPs-DNA complexes as 2.8 × 102 M?1 and 5.4 × 103 M?1. The CD data demonstrated loss in α-helicity of HSA and transformation into β-sheet, suggesting structural alterations by TiO2-NPs. The docking analysis of TiO2-NPs with HSA revealed its preferential binding with aromatic and non-aromatic amino acids in subdomain IIA and IB hydrophobic cavity of HSA. Also, the TiO2-NPs docking revealed the selective binding with A-T bases in minor groove of DNA.  相似文献   

6.
Listeria monocytogenes is the agent of listeriosis, a food-borne disease. It represents a serious problem for the food industry because of its environmental persistence mainly due to its ability to form biofilm on a variety of surfaces. Microrganisms attached on the surfaces are a potential source of contamination for environment and animals and humans. Titanium dioxide nanoparticles (TiO2 NPs) are used in food industry in a variety of products and it was reported that daily exposure to these nanomaterials is very high. Anti-listerial activity of TiO2 NPs was investigated only with UV-irradiated nanomaterials, based on generation of reactive oxigen species (ROS) with antibacterial effect after UV exposure. Since both Listeria monocytogenes and TiO2 NPs are veicolated with foods, this study explores the interaction between Listeria monocytogenes and non UV-irradiated TiO2 NPs, with special focus on biofilm formation and intestinal cell interaction. Scanning electron microscopy and quantitative measurements of biofilm mass indicate that NPs influence both production and structural architecture of listerial biofilm. Moreover, TiO2 NPs show to interfere with bacterial interaction to intestinal cells. Increased biofilm production due to TiO2 NPs exposure may favour bacterial survival in environment and its transmission to animal and human hosts.  相似文献   

7.
8.
We study the ameliorative potential of dimetylthiourea (DMTU), an OH radical trapper and N-acetylcysteine (NAC), a glutathione precursor/H2O2 scavenger against titanium dioxide nanoparticles (TiO2-NPs) and multi-walled carbon nanotubes (MWCNTs) induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml) of either of TiO2-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure), while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure). Investigations were carried out for cell viability, generation of reactive oxygen species (ROS), micronuclei (MN), and expression of markers of oxidative stress (HSP27, CYP2E1), genotoxicity (P53) and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d) activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO2-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO2-NPs induced toxic responses were mediated through OH radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages.  相似文献   

9.
Project: This study investigated the in vitro and in vivo effectiveness of biogenic selenium nanoparticles (Se NPs), biosynthesized by Bacillus sp. MSh-1, against Leishmania major (MRHO/IR/75/ER). Procedure: The 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was used to evaluate the cytotoxicity effects of the biogenic Se NPs against both promastigote and amastigote forms of L. major. In a separate in vivo experiment, we also determined the preventive and therapeutic effects of biogenic Se NPs in BALB/c mice following subcutaneous infected with L. major. Results: The MTT assays showed that the highest toxicity occurred after 72 h against both promastigote and amastigote forms of L. major. The cytotoxicity of Se NPs was higher at all incubation times (24, 48, and 72 h) against the promastigote than the amastigote form (p < 0.05). The 50% inhibitory concentrations (IC50) of the Se NPs were 1.62 ± 0.6 and 4.4 ± 0.6 μg ml?1 against the promastigote and amastigote forms, respectively, after a 72-h incubation period. Apoptosis assays showed DNA fragmentation in promastigotes treated with Se NPs. In an animal challenge, prophylactic doses of biogenic Se NPs delayed the development of localized cutaneous lesions. Moreover, daily administration of Se NPs (5 or 10 mg kg?1 day?1) in similarly infected BALB/c mice that had not received prophylactic doses of Se NPs also abolished the localized lesions after 14 days. Conclusion: Based on these in vitro and in vivo studies, biogenic Se NPs can be considered as a novel therapeutic agent for treatment of the localized lesions typical of cutaneous leishmaniasis.  相似文献   

10.
Recent studies demonstrated that titanium dioxide nanoparticles (TiO2 NPs) could significantly promote photosynthesis and plant growth, but its mechanism is still unclear. In this article, we studied the mechanism of light absorption and transfer of chloroplasts of Arabidopsis thaliana caused by TiO2 NPs treated. The results showed that TiO2 NPs could induce significant increases of light-harvesting complex II (LHCII) b gene expression and LHCII II content on the thylakoid membrane in A. thaliana, and the increases in LHCII were higher than the non-nano TiO2 (bulk-TiO2) treatment. Meanwhile, spectroscopy assays indicated that TiO2 NPs obviously increased the absorption peak intensity of the chloroplast in red and blue region, the fluorescence quantum yield near 680 nm, the excitation peak intensity near 440 and 480 nm and/or near 650 and 680 nm of the chloroplast. TiO2 NPs treatment could reduce F 480/F 440 ratio and increase F 650/F 680 ratio and accelerate the rate of whole chain electron transport and oxygen evolution of the chloroplast. However, the photosynthesis improvement of the non-nanoTiO2 treatment was far less effective than TiO2 NPs treatment. Taken together, TiO2 NPs could promote the light absorption of chloroplast, regulate the distribution of light energy from PS I to PS II by increasing LHCII and accelerate the transformation from light energy to electronic energy, water photolysis, and oxygen evolution.  相似文献   

11.
Streptococcus mitis from the oral cavity causes endocarditis and other systemic infections. Rising resistance against traditional antibiotics amongst oral bacteria further aggravates the problem. Therefore, antimicrobial and antibiofilm activities of zinc oxide and titanium dioxide nanoparticles (NPs) synthesized and characterized during this study against S. mitis ATCC 6249 and Ora-20 were evaluated in search of alternative antimicrobial agents. ZnO and TiO2-NPs exhibited an average size of 35 and 13 nm, respectively. The IC50 values of ZnO and TiO2-NPs against S. mitis ATCC 6249 were 37 and 77 µg ml?1, respectively, while the IC50 values against S. mitis Ora-20 isolate were 31 and 53 µg ml?1, respectively. Live and dead staining, biofilm formation on the surface of polystyrene plates, and extracellular polysaccharide production show the same pattern. Exposure to these nanoparticles also shows an increase (26–83 %) in super oxide dismutase (SOD) activity. Three genes, namely bapA1, sodA, and gtfB like genes from these bacteria were identified and sequenced for quantitative real-time PCR analysis. An increase in sodA gene (1.4- to 2.4-folds) levels and a decrease in gtfB gene (0.5- to 0.9-folds) levels in both bacteria following exposure to ZnO and TiO2-NPs were observed. Results presented in this study verify that ZnO-NPs and TiO2-NPs can control the growth and biofilm formation activities of these strains at very low concentration and hence can be used as alternative antimicrobial agents for oral hygiene.  相似文献   

12.
Cerium oxide nanoparticles (CeO2 NPs) are among the important nanoparticles that are extensively utilized in cosmetics, automotive industries, ultraviolet (UV) filtration, gas sensors, and pharmaceutical products. In this study, CeO2 NPs were synthesized using an aqueous extract of Ziziphus jujube fruit. The synthesized nanoparticles were characterized using UV‐visible spectroscopy, powder X‐ray diffraction, Fourier transform infrared spectroscopy, energy‐dispersive spectroscopy, field energy scanning electron microscopy, and Raman methods. The results indicated that the size of synthesized nanoparticles is between 18 and 25 nm, and they have a spherical shape. UV absorbance of the synthesized nanoparticles was measured through spectrophotometric method in the range of 290 to 320 nm. The cytotoxic activity of synthesized CeO2 NPs against colon (HT‐29) cancer cell line was surveyed through 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. The results showed that synthesized nanoparticles are nontoxic on HT‐29 cells under 400 μg/mL concentrations after 24 hours of treatment time periods. The increase in treatment time cases increases cytotoxic activity of synthesized nanoparticles. Sun protection factor of CeO2 NPs, as a criterion for amount of sunlight radiation protection, was determined by applying Mansur equation. The results demonstrated that synthesized CeO2 NPs have excellent UV protection and sunscreen physical absorption properties.  相似文献   

13.
Herein, we present a green, economic and ecofriendly protocol for synthesis of cobalt oxide (Co3O4-NPs) and magnesium oxide nanoparticles (MgO-NPs) for multifaceted biomedical applications. In the study, a simple aqueous leaf extract of Hibiscus rosa sinensis, was employed for the facile one pot synthesis of Co3O4-NPs and MgO-NPs. The well characterized NPs were explored for multiple biomedical applications including bactericidal activity against urinary tract infection (UTI) isolates, leishmaniasis, larvicidal, antidiabetic antioxidant and biocompatibility studies. Our results showed that both the NPs were highly active against multidrug resistant UTI isolates as compared to traditional antibiotics and induced significant zone of inhibition against Proteus Vulgaris, Pseudomonas Aurigenosa and E.coli. The NPs, in particular Co3O4-NPs also showed significant larvicidal activity against the Aedes Aegypti, the mosquitoes involve in the transmission of Dengue fever. Similarly, excellent leishmanicidal activity was also observed against both the promastigote and amastigote forms of the parasite. Furthermore, the particles also exhibited considerable antidiabetic activity by inhibiting α-amylase and α-glucosidase enzymes. The biosynthesized NPs were found to be excellent antioxidant and biocompatible nanomaterials. Owing to ecofriendly synthesis, non-toxic and biocompatible nature, the Hibiscus rosa sinensis synthesized Co3O4-NPs and MgO-NPs can be exploited as potential candidates for multiple biomedical applications.  相似文献   

14.
The potential toxicity of nanoparticles in plants is scarce and contradictory. Despite the diversity of research efforts, a detailed explanation of the TiO2NPS effects in plant photosynthesis is still missing. The present work gives a new approach to examine the impact of the TiO2NPs on crop production (development and photosynthesis) and plant protection (tolerance and defense systems) in fenugreek (Trigonella foenum graecum L.). Seedlings were assessed in greenhouse trials to estimate the influence of TiO2NPs on physiological characters for 16 days. They were treated with TiO2NPs at a size less than 20 nm. The results revealed that there were no significant effects on seedlings growth and biomass of stem, but a decrease in the fresh weight of leaves after TiO2NPs treatment. Plants treated with 100 mg·L?1 of TiO2NPs presented a reduction and chlorosis in leaf area due to a significant decrease in the chlorophyll a and b contents. The highest value of the photosynthetic pigments was recorded at 50 mg·L?1 of TiO2NPs. However, the treatment with 100 mg·L?1 of TiO2NPs caused a decrease in the levels of chlorophyll a, b and of carotenoids. Both doses of TiO2NPs induced an accumulation of anthocyanins compared to the control after 16 days of seedling development. A nano-stress significantly decreased the flavonoids level, but increased that of polyphenols compared to control after 16 days of exposure. The decrease in the translocation ratio of flavonoids suggests that many of them contain an enediol group, which suggests that they may act as bidentate ligands for anatase TiO2NPs. Accordingly, nano-stressed leaves exhibited significantly enhanced GPOX, CAT and APX activity levels. On the contrary, GPOX and CAT activities were reduced substantially in stems treated with 100 mg·L?1 TiO2NPs. The accumulation of MDA was found to be higher in stems than in leaves. This could be explained by the accumulation of nanoparticles in different organs; it could be that the stems are the favored targets of nanoparticles. These results underline the necessity for a deeper estimation of nanoparticle ecotoxicity and particularly concerning their interaction with plants.  相似文献   

15.
TiO2 nanotube arrays (TiO2 NTs) were fabricated by anodic oxidation and then Ag nanoparticles (Ag NPs) were assembled in TiO2 NTs (Ag/TiO2 NTs) by microwave-assisted chemical reduction. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence spectrum (PL), UV–vis absorption spectrum (UV–vis), and Raman spectrum, respectively. The results showed that Ag NPs were well dispersed on the surface of TiO2 NTs with metallic state. The surface plasmon resonance (SPR) effect of Ag NPs could extend the visible light response and enhance the absorption capacity of TiO2. Furthermore, Ag NPs could also restrain the recombination of photo-generated electron–hole pairs of TiO2 NTs efficiently. The methylene blue photodegradation experiment proved that the SPR phenomenon had an effect on photoreaction enhancement. The results of photocatalytic water splitting indicated that Ag/TiO2 NTs samples had better photocatalytic performance than pure TiO2 NTs. The corresponding hydrogen evolution rate of Ag/TiO2 NTs prepared with 0.002 M AgNO3 solution was 3.3 times as that of pure TiO2 NTs in the test condition. Additionally, the mechanism of catalyst activity enhanced by SPR effect was proposed.  相似文献   

16.
Human leishmaniasis covers a broad spectrum of clinical manifestations ranging from self-healing cutaneous leishmaniasis to severe and lethal visceral leishmaniasis caused among other species by Leishmania major or Leishmania donovani, respectively. Some drug candidates are in clinical trials to substitute current therapies, which are facing emerging drug-resistance accompanied with serious side effects. Here, two cinnamic acid bornyl ester derivatives (1 and 2) were assessed for their antileishmanial activity. Good selectivity and antileishmanial activity of bornyl 3-phenylpropanoate (2) in vitro prompted the antileishmanial assessment in vivo. For this purpose, BALB/c mice were infected with Leishmania major promastigotes and treated with three doses of 50 mg/kg/day of compound 2. The treatment prevented the characteristic swelling at the site of infection and correlated with reduced parasite burden. Transmitted light microscopy and transmission electron microscopy of Leishmania major promastigotes revealed that compounds 1 and 2 induce mitochondrial swelling. Subsequent studies on Leishmania major promastigotes showed the loss of mitochondrial transmembrane potential (ΔΨm) as a putative mode of action. As the cinnamic acid bornyl ester derivatives 1 and 2 had exhibited antileishmanial activity in vitro, and compound 2 in Leishmania major-infected BALB/c mice in vivo, they can be regarded as possible lead structures for the development of new antileishmanial therapeutic approaches.  相似文献   

17.
The effects of gamma radiation and ultraviolet light on motility, morphology, reproduction, ability to transform from amastigote to promastigote, infectivity, and vaccine potential of Leishmania enriettii were studied. Over 800,000 roentgens (R) was necessary to immobilize immediately the organisms, whereas only 25,000 R rendered them noninfective and 50,000 R made amastigotes unable to transform to promastigotes. Increasing degrees of morphological abnormality were seen with increased radiation doses. Single, double, and triple vaccination with 25,000–100,000 R irradiated organisms had no protective value against L. enriettii.  相似文献   

18.
Controversial and inconsistent results on the eco-toxicity of TiO2 nanoparticles (NPs) are commonly found in recorded studies and more experimental works are therefore warranted to elucidate the nanotoxicity and its underlying precise mechanisms. Toxicities of five types of TiO2 NPs with different particle sizes (10∼50 nm) and crystal phases were investigated using Escherichia coli as a test organism. The effect of water chemistry on the nanotoxicity was also examined. The antibacterial effects of TiO2 NPs as revealed by dose-effect experiments decreased with increasing particle size and rutile content of the TiO2 NPs. More bacteria could survive at higher solution pH (5.0–10.0) and ionic strength (50–200 mg L−1 NaCl) as affected by the anatase TiO2 NPs. The TiO2 NPs with anatase crystal structure and smaller particle size produced higher content of intracellular reactive oxygen species and malondialdehyde, in line with their greater antibacterial effect. Transmission electron microscopic observations showed the concentration buildup of the anatase TiO2 NPs especially those with smaller particle sizes on the cell surfaces, leading to membrane damage and internalization. These research results will shed new light on the understanding of ecological effects of TiO2 NPs.  相似文献   

19.
Films based on TiO2 nanoparticles (NPs) have been successfully used as sensing elements in chemical sensors. TiO2 colloidal suspensions can be obtained by spontaneous hydrolysis in acidic solutions of Ti(IV) compounds. The obtained TiO2 NPs can be employed to build up nanostructured films. With the purpose of preparing TiO2-based nanostructured, imprinted materials as sensing elements for piezoelectric sensors, we obtained TiO2 NP dispersions by hydrolyzing potassium titanyl oxalate in the presence of a target analyte (tyrosine). Since morphological properties of the synthesized NPs are known to influence the nanostructured film characteristics, an analytical strategy to characterize such colloidal systems can combine a size-based separation method with spectroscopic analysis to correlate the particle size distribution (PSD) with the particle-target interaction properties able to determine the sensing efficiency.In this work, we present the characterization of colloidal tyrosine-TiO2 NP systems by flow field-flow fractionation (FlFFF) with online, UV/Vis absorption detection and offline fluorescence analysis. FlFFF eliminates the possible contribution of free tyrosine to the absorption and fluorescence properties of the NPs. FlFFF also fractionates NPs on a size basis. Particle size distribution (PSD) profiles of the fractionated NPs are then obtained by conversion of the multi-wavelength UV/Vis fractograms. Size of the fractionated NPs is finally related to fluorescence properties of the collected NPs fractions. Good correlation between the fluorescence intensity, which is proportional to the tyrosine uptake, and the FlFFF-based, NP mass-size frequency distribution finally confirms the existence of tyrosine-TiO2 NP interaction.  相似文献   

20.
Nanoparticles (NPs) in agricultural systems can potentially be used as appropriate candidate for change in growth, development, productivity, and quality of plants. In the present study, we assessed the effect of TiO2 NP concentrations (0, 2, 5, and 10 ppm) on changes of membrane damage indexes like electrolyte leakage index (ELI) and malondialdehyde (MDA) during cold stress (CS) 4 °C in sensitive (ILC 533) and tolerant (Sel 11439) chickpea (Cicer arietinum L.) genotypes. Aggregation of NPs within the vacuole and chloroplast indicated absorbed NPs in seedlings. Bioaccumulation of NPs showed that, under thermal treatments, the sensitive genotype had more permeability to NPs compared to the tolerant one, and TiO2 content was higher during CS compared to optimum temperature. Physiological indexes were positively affected by NP treatments during thermal treatments. TiO2 NP treatments (especially 5 ppm) caused a decrease in ELI during thermal treatments, whereas ELI content under CS treatment increased at 0 ppm TiO2 in both genotypes. Under thermal treatments, although the genotype 11439 showed lower accumulation of MDA than ILC 533 genotype, a significant decrease was observed in MDA content at 5 ppm TiO2. Results showed that TiO2 treatments not only did not induce oxidative damage in sensitive and tolerant chickpea genotypes but also alleviated membrane damage indexes under CS treatment. It was suggested for the first time that TiO2 NPs improved redox status of the genotypes under thermal treatments. New findings possibly would reveal the use of NPs generally or TiO2 NPs especially for increase of cold tolerance in crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号