共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of ‘parts’ and ‘devices’. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic designing capability of GRN topology that can exhibit robust behavior can dramatically change the current practice in synthetic biology. A recent study shows that Darwinian evolution can gradually develop higher topological robustness. Subsequently, this work presents an evolutionary algorithm that simulates natural evolution in silico, for identifying network topologies that are robust to perturbations. We present a Monte Carlo based method for quantifying topological robustness and designed a fitness approximation approach for efficient calculation of topological robustness which is computationally very intensive. The proposed framework was verified using two classic GRN behaviors: oscillation and bistability, although the framework is generalized for evolving other types of responses. The algorithm identified robust GRN architectures which were verified using different analysis and comparison. Analysis of the results also shed light on the relationship among robustness, cooperativity and complexity. This study also shows that nature has already evolved very robust architectures for its crucial systems; hence simulation of this natural process can be very valuable for designing robust biological systems. 相似文献
3.
Hysteresis, observed in many gene regulatory networks, has a pivotal impact on biological systems, which enhances the robustness of cell functions. In this paper, a general model is proposed to describe the hysteretic gene regulatory network by combining the hysteresis component and the transient dynamics. The Bouc-Wen hysteresis model is modified to describe the hysteresis component in the mammalian gene regulatory networks. Rigorous mathematical analysis on the dynamical properties of the model is presented to ensure the bounded-input-bounded-output (BIBO) stability and demonstrates that the original Bouc-Wen model can only generate a clockwise hysteresis loop while the modified model can describe both clockwise and counter clockwise hysteresis loops. Simulation studies have shown that the hysteresis loops from our model are consistent with the experimental observations in three mammalian gene regulatory networks and two E.coli gene regulatory networks, which demonstrate the ability and accuracy of the mathematical model to emulate natural gene expression behavior with hysteresis. A comparison study has also been conducted to show that this model fits the experiment data significantly better than previous ones in the literature. The successful modeling of the hysteresis in all the five hysteretic gene regulatory networks suggests that the new model has the potential to be a unified framework for modeling hysteresis in gene regulatory networks and provide better understanding of the general mechanism that drives the hysteretic function. 相似文献
4.
<正>The precise regulation of gene expression is critical to the normal development and biological function of all organisms. Dysregulation of gene expression during early development can result in a spectrum of failures ranging from minor defects to the termination of development. In adult life, dysregulation ncan lead to 相似文献
5.
6.
The inference of gene regulatory network (GRN) from gene expression data is an unsolved problem of great importance. This inference has been stated, though not proven, to be underdetermined implying that there could be many equivalent (indistinguishable) solutions. Motivated by this fundamental limitation, we have developed new framework and algorithm, called TRaCE, for the ensemble inference of GRNs. The ensemble corresponds to the inherent uncertainty associated with discriminating direct and indirect gene regulations from steady-state data of gene knock-out (KO) experiments. We applied TRaCE to analyze the inferability of random GRNs and the GRNs of E. coli and yeast from single- and double-gene KO experiments. The results showed that, with the exception of networks with very few edges, GRNs are typically not inferable even when the data are ideal (unbiased and noise-free). Finally, we compared the performance of TRaCE with top performing methods of DREAM4 in silico network inference challenge. 相似文献
7.
Babak Faryabi Golnaz Vahedi Jean-Francois Chamberland Aniruddha Datta Edward R Dougherty 《EURASIP Journal on Bioinformatics and Systems Biology》2008,2008(1):620767
A key objective of gene network modeling is to develop intervention strategies to alter regulatory dynamics in such a way as to reduce the likelihood of undesirable phenotypes. Optimal stationary intervention policies have been developed for gene regulation in the framework of probabilistic Boolean networks in a number of settings. To mitigate the possibility of detrimental side effects, for instance, in the treatment of cancer, it may be desirable to limit the expected number of treatments beneath some bound. This paper formulates a general constraint approach for optimal therapeutic intervention by suitably adapting the reward function and then applies this formulation to bound the expected number of treatments. A mutated mammalian cell cycle is considered as a case study. 相似文献
8.
9.
Edward R Dougherty 《Current Genomics》2007,8(6):351-359
The availability of high-throughput genomic data has motivated the development of numerous algorithms to infer gene regulatory networks. The validity of an inference procedure must be evaluated relative to its ability to infer a model network close to the ground-truth network from which the data have been generated. The input to an inference algorithm is a sample set of data and its output is a network. Since input, output, and algorithm are mathematical structures, the validity of an inference algorithm is a mathematical issue. This paper formulates validation in terms of a semi-metric distance between two networks, or the distance between two structures of the same kind deduced from the networks, such as their steady-state distributions or regulatory graphs. The paper sets up the validation framework, provides examples of distance functions, and applies them to some discrete Markov network models. It also considers approximate validation methods based on data for which the generating network is not known, the kind of situation one faces when using real data.Key Words: Epistemology, gene network, inference, validation. 相似文献
10.
Marcel Brun Seungchan Kim Woonjung Choi Edward R Dougherty 《EURASIP Journal on Bioinformatics and Systems Biology》2007,2007(1):82702
The modeling of genetic regulatory networks is becoming increasingly widespread in the study of biological systems. In the abstract, one would prefer quantitatively comprehensive models, such as a differential-equation model, to coarse models; however, in practice, detailed models require more accurate measurements for inference and more computational power to analyze than coarse-scale models. It is crucial to address the issue of model complexity in the framework of a basic scientific paradigm: the model should be of minimal complexity to provide the necessary predictive power. Addressing this issue requires a metric by which to compare networks. This paper proposes the use of a classical measure of difference between amplitude distributions for periodic signals to compare two networks according to the differences of their trajectories in the steady state. The metric is applicable to networks with both continuous and discrete values for both time and state, and it possesses the critical property that it allows the comparison of networks of different natures. We demonstrate application of the metric by comparing a continuous-valued reference network against simplified versions obtained via quantization. 相似文献
11.
12.
13.
14.
Russian Journal of Genetics - Over the past decade, there has been an active study of the interactions between the population of transposable elements (TEs) and the rest of the genome. Many... 相似文献
15.
16.
17.
18.
Narasimhan Sridharakumar Rengaswamy Raghunathan Vadigepalli Rajanikanth 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2009,6(1):158-170
The study of gene regulatory networks is a significant problem in systems biology. Of particular interest is the problem of determining the unknown or hidden higher level regulatory signals by using gene expression data from DNA microarray experiments. Several studies in this area have demonstrated the critical aspect of the network structure in tackling the network modelling problem. Structural analysis of systems has proved useful in a number of contexts, viz., observability, controllability, fault diagnosis, sparse matrix computations etc. In this contribution, we formally define structural properties that are relevant to Gene Regulatory Networks. We explore the structural implications of certain quantitative methods and explain completely the connections between the identifiability conditions and structural criteria of observability and distinguishability. We illustrate these concepts in case studies using representative biologically motivated network examples. The present work bridges the quantitative modelling methods with those based on the structural analysis. 相似文献
19.
20.
Hendrik Hache Hans Lehrach Ralf Herwig 《EURASIP Journal on Bioinformatics and Systems Biology》2009,2009(1):617281
Reverse engineering of gene regulatory networks has been an intensively studied topic in bioinformatics since it constitutes an intermediate step from explorative to causative gene expression analysis. Many methods have been proposed through recent years leading to a wide range of mathematical approaches. In practice, different mathematical approaches will generate different resulting network structures, thus, it is very important for users to assess the performance of these algorithms. We have conducted a comparative study with six different reverse engineering methods, including relevance networks, neural networks, and Bayesian networks. Our approach consists of the generation of defined benchmark data, the analysis of these data with the different methods, and the assessment of algorithmic performances by statistical analyses. Performance was judged by network size and noise levels. The results of the comparative study highlight the neural network approach as best performing method among those under study. 相似文献