首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A type III secretion system (T3SS) is utilized by a large number of gram-negative bacteria to deliver effectors directly into the cytosol of eukaryotic host cells. One essential component of a T3SS is an ATPase that catalyzes the unfolding of proteins, which is followed by the translocation of effectors through an injectisome. Here we demonstrate a functional role of the ATPase SsaN, a component of Salmonella pathogenicity island 2 T3SS (T3SS-2) in Salmonella enterica serovar Typhimurium. SsaN hydrolyzed ATP in vitro and was essential for T3SS function and Salmonella virulence in vivo. Protein-protein interaction analyses revealed that SsaN interacted with SsaK and SsaQ to form the C ring complex. SsaN and its complex co-localized to the membrane fraction under T3SS-2 inducing conditions. In addition, SsaN bound to Salmonella pathogenicity island 2 (SPI-2) specific chaperones, including SsaE, SseA, SscA, and SscB that facilitated translocator/effector secretion. Using an in vitro chaperone release assay, we demonstrated that SsaN dissociated a chaperone-effector complex, SsaE and SseB, in an ATP-dependent manner. Effector release was dependent on a conserved arginine residue at position 192 of SsaN, and this was essential for its enzymatic activity. These results strongly suggest that the T3SS-2-associated ATPase SsaN contributes to T3SS-2 effector translocation efficiency.  相似文献   

2.
Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS) that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2) is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 Å revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2) and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.  相似文献   

3.
Many bacterial pathogens use type three secretion systems (T3SS) to inject virulence factors, named effectors, directly into the cytoplasm of target eukaryotic cells. Most of the T3SS components are conserved among plant and animal pathogens, suggesting a common mechanism of recognition and secretion of effectors. However, no common motif has yet been identified for effectors allowing T3SS recognition. In this work, we performed a biochemical and structural characterization of the Salmonella SopB/SigE chaperone/effector complex by small-angle X-ray scattering (SAXS). Our results showed that the SopB/SigE complex is assembled in dynamic homohexameric-ring-shaped structures with an internal tunnel. In this ring, the chaperone maintains a disordered N-terminal end of SopB molecules, in a good position to be reached and processed by the T3SS. This ring dimensionally fits the ring-organized molecules of the injectisome, including ATPase hexameric rings; this organization suggests that this structural feature is important for ATPase recognition by T3SS. Our work constitutes the first evidence of the oligomerization of an effector, analogous to the organization of the secretion machinery, obtained in solution. As effectors share neither sequence nor structural identity, the quaternary oligomeric structure could constitute a strategy evolved to promote the specificity and efficiency of T3SS recognition.  相似文献   

4.
Type III secretion systems (T3SSs) are multiprotein molecular devices used by many Gram-negative bacterial pathogens to translocate effector proteins into eukaryotic cells. A T3SS is also used for protein export in flagellar assembly, which promotes bacterial motility. The two systems are evolutionarily related, possessing highly conserved components in their export apparatuses. Enteropathogenic Escherichia coli (EPEC) employs a T3SS, encoded by genes in the locus of enterocyte effacement (LEE) pathogenicity island, to colonize the human intestine and cause diarrheal disease. In the present work, we investigated the role of the LEE-encoded EscO protein (previously Orf15 or EscA) in T3SS biogenesis. We show that EscO shares similar properties with the flagellar FliJ and the Yersinia YscO protein families. Our findings demonstrate that EscO is essential for secretion of all categories of T3SS substrates. Consistent with its central role in protein secretion, it was found to interact with the ATPase EscN and its negative regulator, EscL, of the export apparatus. Moreover, we show that EscO stimulates EscN enzymatic activity; however, it is unable to upregulate ATP hydrolysis in the presence of EscL. Remarkably, EscO partially restored the swimming defect of a Salmonella flagellar fliJ mutant and was able to stimulate the ATPase activity of FliI. Overall, our data indicate that EscO is the virulence counterpart of the flagellar FliJ protein.  相似文献   

5.
Translocation of virulence effector proteins through the type III secretion system (T3SS) is essential for the virulence of many medically relevant Gram‐negative bacteria. The T3SS ATPases are conserved components that specifically recognize chaperone–effector complexes and energize effector secretion through the system. It is thought that functional T3SS ATPases assemble into a cylindrical structure maintained by their N‐terminal domains. Using size‐exclusion chromatography coupled to multi‐angle light scattering and native mass spectrometry, we show that in the absence of the N‐terminal oligomerization domain the Salmonella T3SS ATPase InvC can form monomers and dimers in solution. We also present for the first time a 2.05 å resolution crystal structure of InvC lacking the oligomerization domain (InvCΔ79) and map the amino acids suggested for ATPase intersubunit interaction, binding to other T3SS proteins and chaperone–effector recognition. Furthermore, we validate the InvC ATP‐binding site by co‐crystallization of InvCΔ79 with ATPγS (2.65 å) and ADP (2.80 å). Upon ATP‐analogue recognition, these structures reveal remodeling of the ATP‐binding site and conformational changes of two loops located outside of the catalytic site. Both loops face the central pore of the predicted InvC cylinder and are essential for the function of the T3SS ATPase. Our results present a fine functional and structural correlation of InvC and provide further details of the homo‐oligomerization process and ATP‐dependent conformational changes underlying the T3SS ATPase activity.  相似文献   

6.
The enteropathogen Vibrio parahaemolyticus possesses two sets of type III secretion systems, T3SS1 and T3SS2. Effector proteins secreted by these T3SSs are delivered into host cells, leading to cell death or diarrhea. However, it is not known how specific effectors are secreted through a specific T3SS when both T3SSs are expressed within bacteria. One molecule thought to determine secretion specificity is a T3SS-associated chaperone; however, no T3SS2-specific chaperone has been identified. Therefore, we screened T3SS2 chaperone candidates by a pull-down assay using T3SS2 effectors fused with glutathione-S-transferase. A secretion assay revealed that the newly identified cognate chaperone VocC for the T3SS2-specific effector VopC was required for the efficient secretion of the substrate through T3SS2. Further experiments determined the chaperone-binding domain and the amino-terminal secretion signal of the cognate effector. These findings, in addition to the previously identified T3SS1-specific chaperone, VecA, provide a strategy to clarify the specificity of effector secretion through T3SSs of V.?parahaemolyticus.  相似文献   

7.
Type III secretion systems (T3SSs) are essential virulence devices for many gram-negative bacteria that are pathogenic for plants, animals, and humans. They serve to translocate virulence effector proteins directly into eukaryotic host cells. T3SSs are composed of a large cytoplasmic bulb and a transmembrane region into which a needle is embedded, protruding above the bacterial surface. The emerging antibiotic resistance of bacterial pathogens urges the development of novel strategies to fight bacterial infections. Therapeutics that rather than kill bacteria only attenuate their virulence may reduce the frequency or progress of resistance emergence. Recently, a group of salicylidene acylhydrazides were identified as inhibitors of T3SSs in Yersinia, Chlamydia, and Salmonella species. Here we show that these are also effective on the T3SS of Shigella flexneri, where they block all related forms of protein secretion so far known, as well as the epithelial cell invasion and induction of macrophage apoptosis usually demonstrated by this bacterium. Furthermore, we show the first evidence for the detrimental effect of these compounds on T3SS needle assembly, as demonstrated by increased numbers of T3S apparatuses without needles or with shorter needles. Therefore, the compounds generate a phenocopy of T3SS export apparatus mutants but with incomplete penetrance. We discuss why this would be sufficient to almost completely block the later secretion of effector proteins and how this begins to narrow the search for the molecular target of these compounds.  相似文献   

8.
Vibrio parahaemolyticus causes human gastroenteritis. Genomic sequencing of this organism has revealed that it has two sets of type III secretion systems, T3SS1 and T3SS2, both of which are important for its pathogenicity. However, the mechanism of protein secretion via T3SSs is unknown. A characteristic of many effectors is that they require specific chaperones for efficient delivery via T3SSs; however, no chaperone has been experimentally identified in the T3SSs of V. parahaemolyticus . In this study, we identified candidate T3SS1-associated chaperones from genomic sequence data and examined their roles in effector secretion/translocation and binding to their cognate substrates. From these experiments, we concluded that there is a T3S-associated chaperone, VecA, for a cytotoxic T3SS1-dependent effector, VepA. Further analysis using pulldown and secretion assays characterized the chaperone-binding domain encompassing the first 30–100 amino acids and an amino terminal secretion signal encompassing the first 5–20 amino acids on VepA. These findings will provide a strategy to clarify how the T3SS1 of V. parahaemolyticus secretes its specific effectors.  相似文献   

9.
10.
Bacteria hijack eukaryotic cells by injecting virulence effectors into host cytosol with a type III secretion system (T3SS). Effectors are targeted with their cognate chaperones to hexameric T3SS ATPase at the bacterial membrane''s cytosolic face. In this issue of the Journal of Bacteriology, Roblin et al. (P. Roblin, F. Dewitte, V. Villeret, E. G. Biondi, and C. Bompard, J Bacteriol 197:688–698, 2015, http://dx.doi.org/10.1128/JB.02294-14) show that the T3SS chaperone SigE of Salmonella can form hexameric rings rather than dimers when bound to its cognate effector, SopB, implying a novel multimeric association for chaperone/effector complexes with their ATPase.  相似文献   

11.
Type III Secretion Systems (T3SSs) are structurally conserved nanomachines that span the inner and outer bacterial membranes, and via a protruding needle complex contact host cell membranes and deliver type III effector proteins. T3SS are phylogenetically divided into several families based on structural basal body components. Here we have studied the evolutionary and functional conservation of four T3SS proteins from the Inv/Mxi‐Spa family: a cytosolic chaperone, two hydrophobic translocators that form a plasma membrane‐integral pore, and the hydrophilic ‘tip complex’ translocator that connects the T3SS needle to the translocon pore. Salmonella enterica serovar Typhimurium (S. Typhimurium), a common cause of food‐borne gastroenteritis, possesses two T3SSs, one belonging to the Inv/Mxi‐Spa family. We used invasion‐deficient S. Typhimurium mutants as surrogates for expression of translocator orthologs identified from an extensive phylogenetic analysis, and type III effector translocation and host cell invasion as a readout for complementation efficiency, and identified several Inv/Mxi‐Spa orthologs that can functionally substitute for the S. Typhimurium chaperone and translocator proteins. Functional complementation correlates with amino acid sequence identity between orthologs, but varies considerably between the four proteins. This is the first in‐depth survey of the functional interchangeability of Inv/Mxi‐Spa T3SS proteins acting directly at the host‐pathogen interface.  相似文献   

12.
Type III secretion systems (T3SSs) are central virulence mechanisms used by a variety of Gram-negative bacteria to inject effector proteins into host cells. The needle polymer is an essential part of the T3SS that provides the effector proteins a continuous channel into the host cytoplasm. It has been shown for a few T3SSs that two chaperones stabilize the needle protein within the bacterial cytosol to prevent its premature polymerization. In this study, we characterized the chaperones of the enteropathogenic Escherichia coli (EPEC) needle protein EscF. We found that Orf2 and Orf29, two poorly characterized proteins encoded within the EPEC locus of enterocyte effacement (LEE), function as the needle protein cochaperones. Our finding demonstrated that both Orf2 and Orf29 are essential for type III secretion (T3S). In addition, we found that Orf2 and Orf29 associate with the bacterial membrane and form a complex with EscF. Orf2 and Orf29 were also shown to disrupt the polymerization of EscF in vitro. Prediction of the tertiary structures of Orf2 and Orf29 showed high structural homology to chaperones of other T3SS needle proteins. Overall, our data suggest that Orf2 and Orf29 function as the chaperones of the needle protein, and therefore, they have been renamed EscE and EscG.  相似文献   

13.
The type VI secretion system (T6SS) is a widespread protein secretion apparatus used by Gram-negative bacteria to deliver toxic effector proteins into adjacent bacterial or host cells. Here, we uncovered a role in interbacterial competition for the two T6SSs encoded by the marine pathogen Vibrio alginolyticus. Using comparative proteomics and genetics, we identified their effector repertoires. In addition to the previously described effector V12G01_02265, we identified three new effectors secreted by T6SS1, indicating that the T6SS1 secretes at least four antibacterial effectors, of which three are members of the MIX-effector class. We also showed that the T6SS2 secretes at least three antibacterial effectors. Our findings revealed that many MIX-effectors belonging to clan V are “orphan” effectors that neighbor mobile elements and are shared between marine bacteria via horizontal gene transfer. We demonstrated that a MIX V-effector from V. alginolyticus is a functional T6SS effector when ectopically expressed in another Vibrio species. We propose that mobile MIX V-effectors serve as an environmental reservoir of T6SS effectors that are shared and used to diversify antibacterial toxin repertoires in marine bacteria, resulting in enhanced competitive fitness.  相似文献   

14.
Burkholderia rhizoxinica and Rhizopus microsporus form a unique symbiosis in which intracellular bacteria produce the virulence factor of the phytopathogenic fungus. Notably, the host strictly requires endobacteria to sporulate. In this study, we show that the endofungal bacteria possess a type III secretion system (T3SS), which has a crucial role in the maintenance of the alliance. Mutants defective in type III secretion show reduced intracellular survival and fail to elicit sporulation of the host. Furthermore, genes coding for T3SS components are upregulated during cocultivation of the bacterial symbiont with their host. This is the first report on a T3SS involved in bacterial–fungal symbiosis. Phylogenetic analysis revealed that the T3SS represents a prototype of a clade of yet uncharacterized T3SSs within the hrp superfamily of T3SSs from plant pathogenic microorganisms. In a control experiment, we demonstrate that under laboratory conditions, rhizoxin production was not required for establishment of the symbiotic interaction.  相似文献   

15.
Bacterium usually utilises type III secretion systems (T3SS) to deliver effectors directly into host cells with the aids of chaperones. Hence, it is very important to identify bacterial T3SS effectors and chaperones for better understanding of host–pathogen interactions. Edwardsiella piscicida is an invasive enteric bacterium, which infects a wide range of hosts from fish to human. Given E. piscicida encodes a functional T3SS to promote infection, very few T3SS effectors and chaperones have been identified in this bacterium so far. Here, we reported that EseK is a new T3SS effector protein translocated by E. piscicida. Bioinformatic analysis indicated that escH and escS encode two putative class I T3SS chaperones. Further investigation indicated that EscH and EscS can enhance the secretion and translocation of EseK. EscH directly binds EseK through undetermined binding domains, whereas EscS binds EseK via its N‐terminal α‐helix. We also found that EseK has an N‐terminal chaperone‐binding domain, which binds EscH and EscS to form a ternary complex. Zebrafish infection experiments showed that EseK and its chaperones EscH and EscS are necessary for bacterial colonisation in zebrafish. This work identified a new T3SS effector, EseK, and its two T3SS chaperones, EscH and EscS, in E. piscicida, which enriches our knowledge of bacterial T3SS effector–chaperone interaction and contributes to our understanding of bacterial pathogenesis.  相似文献   

16.
The type VI secretion system (T6SS) is a bacterial nanomachine for the transport of effector molecules into prokaryotic and eukaryotic cells. It involves the assembly of a tubular structure composed of TssB and TssC that is similar to the tail sheath of bacteriophages. The sheath contracts to provide the energy needed for effector delivery. The AAA+ ATPase ClpV disassembles the contracted sheath, which resets the systems for reassembly of an extended sheath that is ready to fire again. This mechanism is crucial for T6SS function. In Vibrio cholerae, ClpV binds the N terminus of TssC within a hydrophobic groove. In this study, we resolved the crystal structure of the N-terminal domain of Pseudomonas aeruginosa ClpV1 and observed structural alterations in the hydrophobic groove. The modification in the ClpV1 groove is matched by a change in the N terminus of TssC, suggesting the existence of distinct T6SS classes. An accessory T6SS component, TagJ/HsiE, exists predominantly in one of the classes. Using bacterial two-hybrid approaches, we showed that the P. aeruginosa homolog HsiE1 interacts strongly with ClpV1. We then resolved the crystal structure of HsiE1 in complex with the N terminus of HsiB1, a TssB homolog and component of the contractile sheath. Phylogenetic analysis confirmed that these differences distinguish T6SS classes that resulted from a functional co-evolution between TssB, TssC, TagJ/HsiE, and ClpV. The interaction of TagJ/HsiE with the sheath as well as with ClpV suggests an alternative mode of disassembly in which HsiE recruits the ATPase to the sheath.  相似文献   

17.
Bacterial type IV secretion systems (T4SSs) are a versatile group of nanomachines that can horizontally transfer DNA through conjugation and deliver effector proteins into a wide range of target cells. The components of T4SSs in gram-negative bacteria are organized into several large subassemblies: an inner membrane complex, an outer membrane core complex, and, in some species, an extracellular pilus. Cryo-electron tomography has been used to define the structures of T4SSs in intact bacteria, and high-resolution structural models are now available for isolated core complexes from conjugation systems, the Xanthomonas citri T4SS, the Helicobacter pylori Cag T4SS, and the Legionella pneumophila Dot/Icm T4SS. In this review, we compare the molecular architectures of these T4SSs, focusing especially on the structures of core complexes. We discuss structural features that are shared by multiple T4SSs as well as evolutionary strategies used for T4SS diversification. Finally, we discuss how structural variations among T4SSs may confer specialized functional properties.  相似文献   

18.
Type III protein secretion systems (T3SSs), which have evolved to deliver bacterial proteins into nucleated cells, are found in many species of Gram-negative bacteria that live in close association with eukaryotic hosts. Proteins destined to travel this secretion pathway are targeted to the secretion machine by customized chaperones, with which they form highly structured complexes. Here, we have identified a mechanism that co-ordinates the expression of the Salmonella Typhimurium T3SS chaperone SicP and its cognate effector SptP. Translation of the effector is coupled to that of its chaperone, and in the absence of translational coupling, an inhibitory RNA structure prevents translation of sptP. The data presented here show how the genomic organization of functionally related proteins can have a significant impact on the co-ordination of their expression.  相似文献   

19.
Enteropathogenic Escherichia coli employs a type III secretion system (T3SS) to translocate virulence effector proteins directly into enterocyte host cells, leading to diarrheal disease. The T3SS is encoded within the chromosomal locus of enterocyte effacement (LEE). The function of some of the LEE-encoded proteins remains unknown. Here we investigated the role of the Orf16 protein in T3SS biogenesis and function. An orf16 deletion mutant showed translocator and effector protein secretion profiles different from those of wild-type cells. The orf16 null strain produced T3S structures with abnormally long needles and filaments that caused weak hemolysis of red blood cells. Furthermore, the number of fully assembled T3SSs was also reduced in the orf16 mutant, indicating that Orf16, though not essential, is required for efficient T3SS assembly. Analysis of protein secretion revealed that Orf16 is a T3SS-secreted substrate and regulates the secretion of the inner rod component EscI. Both pulldown and yeast two-hybrid assays showed that Orf16 interacts with the C-terminal domain of an inner membrane component of the secretion apparatus, EscU; the inner rod protein EscI; the needle protein EscF; and the multieffector chaperone CesT. These results suggest that Orf16 regulates needle length and, along with EscU, participates in a substrate specificity switch from early substrates to translocators. Taken together, our results suggest that Orf16 acts as a molecular measuring device in a way similar to that of members of the Yersinia YscP and flagellar FliK protein family. Therefore, we propose that this protein be renamed EscP.  相似文献   

20.
The type VI secretion system (T6SS) is a spear-like nanomachine found in gram-negative pathogens for delivery of toxic effectors to neighboring bacterial and host cells. Its assembly requires a tip spike complex consisting of a VgrG-trimer, a PAAR protein, and the interacting effectors. However, how the spike controls T6SS assembly remains elusive. Here we investigated the role of three VgrG-effector pairs in Aeromonas dhakensis strain SSU, a clinical isolate with a constitutively active T6SS. By swapping VgrG tail sequences, we demonstrate that the C-terminal ~30 amino-acid tail dictates effector specificity. Double deletion of vgrG1&2 genes (VgrG3+) abolished T6SS secretion, which can be rescued by ectopically expressing chimeric VgrG3 with a VgrG1/2-tail but not the wild type VgrG3. In addition, deletion of effector-specific chaperones also severely impaired T6SS secretion, despite the presence of intact VgrG and effector proteins, in both SSU and Vibrio cholerae V52. We further show that SSU could deliver a V. cholerae effector VasX when expressing a plasmid-borne chimeric VgrG with VasX-specific VgrG tail and chaperone sequences. Pull-down analyses show that two SSU effectors, TseP and TseC, could interact with their cognate VgrGs, the baseplate protein TssK, and the key assembly chaperone TssA. Effectors TseL and VasX could interact with TssF, TssK and TssA in V. cholerae. Collectively, we demonstrate that chimeric VgrG-effector pairs could bypass the requirement of heterologous VgrG complex and propose that effector-stuffing inside the baseplate complex, facilitated by chaperones and the interaction with structural proteins, serves as a crucial structural determinant for T6SS assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号