首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 867 毫秒
1.
BackgroundDetoxification of aldehydes by aldehyde dehydrogenases (ALDHs) is crucial to maintain cell function. In cardiovascular diseases, reactive oxygen species generated during ischemia/reperfusion events trigger lipoperoxidation, promoting cell accumulation of highly toxic lipid aldehydes compromising cardiac function. In this context, activation of ALDH2, may contribute to preservation of cell integrity by diminishing aldehydes content more efficiently.MethodsThe theoretic interaction of piperlonguminine (PPLG) with ALDH2 was evaluated by docking analysis. Recombinant human ALDH2 was used to evaluate the effects of PPLG on the kinetics of the enzyme. The effects of PPLG were further investigated in a myocardial infarction model in rats, evaluating ALDHs activity, antioxidant enzymes, oxidative stress markers and mitochondrial function.ResultsPPLG increased the activity of recombinant human ALDH2 and protected the enzyme from inactivation by lipid aldehydes. Additionally, administration of this drug prevented the damage induced by ischemia/reperfusion in rats, restoring heart rate and blood pressure, which correlated with protection of ALDHs activity in the tissue, a lower content of lipid aldehydes, and the preservation of mitochondrial function.ConclusionActivation of ALDH2 by piperlonguminine ameliorates cell damage generated in heart ischemia/reperfusion events, by decreasing lipid aldehydes concentration promoting cardioprotection.  相似文献   

2.
3.
Mammalian aldehyde dehydrogenase 7A1 (ALDH7A1) is homologous to plant ALDH7B1 which protects against various forms of stress such as increased salinity, dehydration and treatment with oxidants or pesticides. Deleterious mutations in human ALDH7A1 are responsible for pyridoxine-dependent and folinic acid-responsive seizures. In previous studies, we have shown that human ALDH7A1 protects against hyperosmotic stress presumably through the generation of betaine, an important cellular osmolyte, formed from betaine aldehyde. Hyperosmotic stress is coupled to an increase in oxidative stress and lipid peroxidation (LPO). In this study, cell viability assays revealed that stable expression of mitochondrial ALDH7A1 in Chinese hamster ovary (CHO) cells provides significant protection against treatment with the LPO-derived aldehydes hexanal and 4-hydroxy-2-nonenal (4HNE) implicating a protective function for the enzyme during oxidative stress. A significant increase in cell survival was also observed in CHO cells expressing either mitochondrial or cytosolic ALDH7A1 treated with increasing concentrations of hydrogen peroxide (H(2)O(2)) or 4HNE, providing further evidence for anti-oxidant activity. In vitro enzyme activity assays indicate that human ALDH7A1 is sensitive to oxidation and that efficiency can be at least partially restored by incubating recombinant protein with the thiol reducing agent β-mercaptoethanol (BME). We also show that after reactivation with BME, recombinant ALDH7A1 is capable of metabolizing the reactive aldehyde 4HNE. In conclusion, ALDH7A1 mechanistically appears to provide cells protection through multiple pathways including the removal of toxic LPO-derived aldehydes in addition to osmolyte generation.  相似文献   

4.
Abstract

Aldehydes are highly reactive molecules that may have a variety of effects on biological systems. They can be generated from a virtually limitless number of endogenous and exogenous sources. Although some aldehyde-mediated effects such as vision are beneficial, many effects are deleterious, including cytotoxicity, mutagenicity, and carcinogenicity. A variety of enzymes have evolved to metabolize aldehydes to less reactive forms. Among the most effective pathways for aldehyde metabolism is their oxidation to carboxylic acids by aldehyde dehydrogenases (ALDHs).

ALDHs are a family of NADP-dependent enzymes with common structural and functional features that catalyze the oxidation of a broad spectrum of aliphatic and aromatic aldehydes. Based on primary sequence analysis, three major classes of mammalian ALDHs — 1, 2, and 3 — have been identified. Classes 1 and 3 contain both constitutively expressed and inducible cytosolic forms. Class 2 consists of constitutive mitochondrial enzymes. Each class appears to oxidize a variety of substrates that may be derived either from endogenous sources such as amino acid, biogenic amine, or lipid metabolism or from exogenous sources, including aldehydes derived from xenobiotic metabolism.

Changes in ALDH activity have been observed during experimental liver and urinary bladder carcinogenesis and in a number of human tumors, including some liver, colon, and mammary cancers. Changes in ALDH define at least one population of preneoplastic cells having a high probability of progressing to overt neoplasms. The most common change is the appearance of class 3 ALDH dehydrogenase activity in tumors arising in tissues that normally do not express this form. The changes in enzyme activity occur early in tumorigenesis and are the result of permanent changes in ALDH gene expression.

This review discusses several aspects of ALDH expression during carcinogenesis. A brief introduction examines the variety of sources of aldehydes. This is followed by a discussion of the mammalian ALDHs. Because the ALDHs are a relatively understudied family of enzymes, this section presents what is currently known about the general structural and functional properties of the enzymes and the interrelationships of the various forms.

The remainder of the review discusses various aspects of the ALDHs in relation to tumorigenesis. The expression of ALDH during experimental carcinogenesis and what is known about the molecular mechanisms underlying those changes are discussed. This is followed by an extended discussion of the potential roles for ALDH in tumorigenesis. The role of ALDH in the metabolism of cyclophosphamidelike chemotherapeutic agents is described. This work suggests that modulation of ALDH activity may be an important determinant of the effectiveness of certain chemotherapeutic agents. The evidence that changes in ALDH are part of an adaptive response of preneoplastic and neoplastic cells to altered cell physiology or stress is then considered. Roles in the metabolism of aldehydes generated from lipid peroxidation and as part of the Ah gene-mediated response to xenobiotic exposure are both discussed. The data are consistent with a role for certain ALDHs in lipid aldehyde metabolism. Biochemical and genetic data also imply that changes in ALDH may be linked, in part, to cellular adaptation to oxidative stress.

Finally, a model of inducible ALDH gene regulation is proposed. The model incorporates current information about ALDH gene expression with the regulation of other genes known to be part of the adaptive responses occurring in neoplastic cells. The model suggests that regulation of class 1 and 3 ALDH gene activity may be complex, involving the tissue-specific ability to respond to a variety of physiological cues. The model also suggests several avenues for future research that should provide a clearer understanding of the regulation of this important gene family in response to a variety of factors.  相似文献   

5.
《Translational oncology》2020,13(3):100748
BACKGROUND: Glioblastoma (GBM) is the most malignant primary brain tumor. Relapse occurs regularly, and the clinical behavior seems to be due to a therapy-resistant subpopulation of glioma-initiating cells that belong to the group of cancer stem cells. Aldehyde dehydrogenase (ALDH) has been identified as a marker for this cell population, and we have shown previously that ALDH1A3-positive GBM cells are more resistant against temozolomide (TMZ) treatment. However, it is still unclear how ALDH expression mediates chemoresistance. MATERIALS AND METHODS: ALDH1A3 expression was analyzed in 112 specimens from primary and secondary surgical resections of 56 patients with GBM (WHO grade IV). All patients received combined adjuvant radiochemotherapy. For experimental analysis, CRISPR-Cas9–induced knockout cells from three established GBM cell lines (LN229, U87MG, T98G) and two glioma stem-like cell lines were investigated after TMZ treatment. RESULTS: ALDH1A3 knockout cells were more sensitive to TMZ, and oxidative stress seemed to be the molecular process where ALDH1A3 exerts its role in resistance against TMZ. Oxidative stress led to lipid peroxidation, yielding active aldehydes that were detoxified by ALDH enzymatic activity. During the metabolic process, autophagy was induced leading to downregulation of the enzyme, but ALDH1A3 is upregulated to even higher expression levels after finishing the TMZ therapy in vitro. Recurrent GBMs show significantly higher ALDH1A3 expression than the respective samples from the primary tumor, and patients suffering from GBM with high ALDH1A3 expression showed a shorter median survival time (12 months vs 21 months, P < .05). CONCLUSION: Oxidative stress is an important and clinically relevant component of TMZ-induced therapeutic effects. Cytotoxicity seems to be mediated by aldehydes resulting from lipid peroxidation, and ALDH1A3 is able to reduce the number of toxic aldehydes. Therefore, we present a molecular explanation of the role of ALDH1A3 in therapeutic resistance of human GBM cells.  相似文献   

6.
Aldehyde dehydrogenases (ALDHs) couple the oxidation of aldehydes to the reduction of NAD(P)+. These enzymes have gained importance as they have been related to the detoxification of aldehydes generated in several diseases involving oxidative stress. It has been determined that tetrameric ALDHs work only with two of their four active sites (half‐of‐the‐sites reactivity), but the mechanistic reason for this feature remains unknown. In this study, tetrameric human aldehyde dehydrogenase class 1A1 (ALDH1A1) was dimerized to study the correlation of the oligomeric structure with the presence of half‐of‐the‐sites reactivity. Stable dimers from ALDH1A1 were generated by combining the mutation of two residues of the dimer–dimer interface in the tetramer (previously shown to render a low‐active and unstable enzyme) and the fusion of green fluorescent protein (GFP) in the C‐terminus of the mutant. Some kinetic properties of the GFP‐fusion mutant resembled those of human aldehyde dehydrogenase class 3A1, a native dimer, in that the fusion dimer did not show burst in the generation of nicotinamide adenine dinucleotide (NADH) and was less sensitive to the action of specific modulators. The presence of primary isotope effect indicated that the rate‐limiting step changed from NADH release to hydride transfer. The mutant showed higher activity with malondialdehyde and acrolein and was more resistant to inactivation by acrolein compared with the wild type. The mutant kinetic profile showed two hyperbolic components when the substrates were varied, suggesting the presence of two active sites with different affinities and catalytic capacities. In conclusion, the ALDH1A1–GFP dimeric mutant exhibits full site reactivity, suggesting that only the tetrameric structure induces the half‐of‐the‐sites reactivity. Proteins 2013; 81:1330–1339. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Toxic medium chain length alkanals, alkenals, and 4-hydroxyalkenals that are generated during lipid peroxidation are potential substrates for aldehyde dehydrogenase (ALDH) isoforms. We have developed transgenic cell lines to examine the potential for either human ALDH1A1 or ALDH3A1 to protect against damage mediated by these toxic aldehydes. Using crude cytosols from stably transfected cell lines, these aldehydes were confirmed to be excellent substrates for ALDH3A1, but were poorly oxidized by ALDH1A1. Expression of ALDH3A1 by stable transfection in V79 cells conferred a high level of protection against growth inhibition by the medium-chain length aldehyde substrates with highest substrate activity, including hexanal, trans-2-hexenal, trans-2-octenal, trans-2-nonenal, and 4-hydroxy-2-nonenal (HNE). This was reflected in a parallel ability of ALDH3A1 to prevent depletion of glutathione by these aldehydes. Expression of hALDH3 completely blocked the potent induction of apoptosis by HNE in both V79 cells and in a RAW 264.7 murine macrophage cell line, consistent with the observed total prevention of HNE-protein adduct formation. Structure–activity studies indicated that the rank order of potency for the contributions of HNE functional groups to toxicity was aldehyde ≥C2=C3 double bond>>C4-hydroxyl group. Oxidation of the aldehyde moiety of HNE to a carboxyl by ALDH3A1 expressed in stably transfected cell lines drastically reduced its potency for growth inhibition and apoptosis induction. In contrast, ALDH1A1 expression provided only moderate protection against trans-2-nonenal (t2NE), and none against the other six–nine carbon aldehydes. Neither ALDH1A1 nor ALDH3A1 conferred any protection against acrolein, acetaldehyde, or chloroacetaldehyde. A small degree of protection against malondialdehyde was afforded by ALDH1A1, but not ALDH3A1. Paradoxically, cells expressing ALDH3A1 were 1.5-fold more sensitive to benzaldehyde toxicity than control V79 cells. These studies demonstrate that expression of class 3 ALDH, but not class 1 ALDH, can be an important determinant of cellular resistance to toxicity mediated by aldehydes of intermediate chain length that are produced during lipid peroxidation.  相似文献   

8.
Aldehyde dehydrogenases (ALDHs) are critical enzymes in the metabolism of endogenous and exogenous aldehydes. The human genome contains 19 putatively functional ALDH genes; ALDH3B1 belongs to the ALDH3 family. While recent studies have linked the ALDH3B1 locus to schizophrenia, nothing was known, until now, about the properties and significance of the ALDH3B1 protein. The aim of this study was to characterize the ALDH3B1 protein. Human ALDH3B1 was baculovirus-expressed and found to be catalytically active towards medium- and long-chain aliphatic aldehydes and the aromatic aldehyde benzaldehyde. Western blot analyses indicate that ALDH3B1 is highly expressed in kidney and liver and moderately expressed in various brain regions. ALDH3B1-transfected HEK293 cells were significantly protected against cytotoxicity induced by the lipid peroxidation product octanal when compared to vector-transfected cells. This study shows for the first time the functionality, expression and protective role of ALDH3B1 and indicates a potential physiological role of ALDH3B1 against oxidative stress.  相似文献   

9.
Toxic medium chain length alkanals, alkenals, and 4-hydroxyalkenals that are generated during lipid peroxidation are potential substrates for aldehyde dehydrogenase (ALDH) isoforms. We have developed transgenic cell lines to examine the potential for either human ALDH1A1 or ALDH3A1 to protect against damage mediated by these toxic aldehydes. Using crude cytosols from stably transfected cell lines, these aldehydes were confirmed to be excellent substrates for ALDH3A1, but were poorly oxidized by ALDH1A1. Expression of ALDH3A1 by stable transfection in V79 cells conferred a high level of protection against growth inhibition by the medium-chain length aldehyde substrates with highest substrate activity, including hexanal, trans-2-hexenal, trans-2-octenal, trans-2-nonenal, and 4-hydroxy-2-nonenal (HNE). This was reflected in a parallel ability of ALDH3A1 to prevent depletion of glutathione by these aldehydes. Expression of hALDH3 completely blocked the potent induction of apoptosis by HNE in both V79 cells and in a RAW 264.7 murine macrophage cell line, consistent with the observed total prevention of HNE-protein adduct formation. Structure-activity studies indicated that the rank order of potency for the contributions of HNE functional groups to toxicity was aldehyde >/=C2=C3 double bond>C4-hydroxyl group. Oxidation of the aldehyde moiety of HNE to a carboxyl by ALDH3A1 expressed in stably transfected cell lines drastically reduced its potency for growth inhibition and apoptosis induction. In contrast, ALDH1A1 expression provided only moderate protection against trans-2-nonenal (t2NE), and none against the other six-nine carbon aldehydes. Neither ALDH1A1 nor ALDH3A1 conferred any protection against acrolein, acetaldehyde, or chloroacetaldehyde. A small degree of protection against malondialdehyde was afforded by ALDH1A1, but not ALDH3A1. Paradoxically, cells expressing ALDH3A1 were 1.5-fold more sensitive to benzaldehyde toxicity than control V79 cells. These studies demonstrate that expression of class 3 ALDH, but not class 1 ALDH, can be an important determinant of cellular resistance to toxicity mediated by aldehydes of intermediate chain length that are produced during lipid peroxidation.  相似文献   

10.
The aldehyde dehydrogenase (ALDH) superfamily is a vast group of enzymes that catalyze the NAD+-dependent oxidation of aldehydes to carboxylic acids. ALDH16 is perhaps the most enigmatic member of the superfamily, owing to its extra C-terminal domain of unknown function and the absence of the essential catalytic cysteine residue in certain non-bacterial ALDH16 sequences. Herein we report the first production of recombinant ALDH16, the first biochemical characterization of ALDH16, and the first crystal structure of ALDH16. Recombinant expression systems were generated for the bacterial ALDH16 from Loktanella sp. and human ALDH16A1. Four high-resolution crystal structures of Loktanella ALDH16 were determined. Loktanella ALDH16 is found to be a bona fide enzyme, exhibiting NAD+-binding, ALDH activity, and esterase activity. In contrast, human ALDH16A1 apparently lacks measurable aldehyde oxidation activity, suggesting that it is a pseudoenzyme, consistent with the absence of the catalytic Cys in its sequence. The fold of ALDH16 comprises three domains: NAD+-binding, catalytic, and C-terminal. The latter is unique to ALDH16 and features a Rossmann fold connected to a protruding β-flap. The tertiary structural interactions of the C-terminal domain mimic the quaternary structural interactions of the classic ALDH superfamily dimer, a phenomenon we call “trans-hierarchical structural similarity.” ALDH16 forms a unique dimer in solution, which mimics the classic ALDH superfamily dimer-of-dimer tetramer. Small-angle X-ray scattering shows that human ALDH16A1 has the same dimeric structure and fold as Loktanella ALDH16. We suggest that the Loktanella ALDH16 structure may be considered to be the archetype of the ALDH16 family.  相似文献   

11.
The highly similar aldehyde dehydrogenase isozymes (ALDH1A1 and ALDH2) have been implicated in the metabolism of toxic biogenic aldehydes such as 3,4-dihydroxyphenylacetaldehyde (DOPAL) and 4-hydroxy-2E-nonenal. We report the down-regulation of ALDH1A1 mRNA found in substantia nigra tissue of human Parkinson’s disease (PD) samples using the Genome-Wide SpliceArray? (GWSA?) technology. Since DOPAL can rapidly inactivate ALDH1A1 in vitro, we set up a DOPAL-induced ALDH1A1 inactivation assay and used this assay to demonstrate that Alda-1, a compound originally identified as an activator of ALDH2, can also activate ALDH1A1. We carried out a virtual screening of 19,943 compounds and the top 21 hits from this screen were tested in the DOPAL inactivation assay with ALDH1A1 which led to identification of an activator as well as two inhibitors among these hits. These findings represent an attractive starting point for developing higher potency activator compounds that may have utility in restoring the metabolism of DOPAL in PD.  相似文献   

12.
The accumulation of reactive aldehydes is implicated in the development of several disorders. Aldehyde dehydrogenases (ALDHs) detoxify aldehydes by oxidizing them to the corresponding carboxylic acids. Among the 19 human ALDHs, ALDH3A2 is the only known ALDH that catalyzes the oxidation of long-chain fatty aldehydes including C16 aldehydes (hexadecanal and trans-2-hexadecenal) generated through sphingolipid metabolism. In the present study, we have identified that ALDH3B1 is also active in vitro toward C16 aldehydes and demonstrated that overexpression of ALDH3B1 restores the sphingolipid metabolism in the ALDH3A2-deficient cells. In addition, we have determined that ALDH3B1 is localized in the plasma membrane through its C-terminal dual lipidation (palmitoylation and prenylation) and shown that the prenylation is required particularly for the activity toward hexadecanal. Since knockdown of ALDH3B1 does not cause further impairment of the sphingolipid metabolism in the ALDH3A2-deficient cells, the likely physiological function of ALDH3B1 is to oxidize lipid-derived aldehydes generated in the plasma membrane and not to be involved in the sphingolipid metabolism in the endoplasmic reticulum.  相似文献   

13.
Aldehyde dehydrogenase (ALDH) enzymes are critical in the detoxification of endogenous and exogenous aldehydes. Our previous findings indicate that the ALDH3B1 enzyme is expressed in several mouse tissues and is catalytically active toward aldehydes derived from lipid peroxidation, suggesting a potential role against oxidative stress. The aim of this study was to elucidate by immunohistochemistry the tissue, cellular, and subcellular distribution of ALDH3B1 in normal human tissues and in tumors of human lung, colon, breast, and ovary. Our results indicate that ALDH3B1 is expressed in a tissue-specific manner and in a limited number of cell types, including hepatocytes, proximal convoluted tubule cells, cerebellar astrocytes, bronchiole ciliated cells, testis efferent ductule ciliated cells, and histiocytes. ALDH3B1 expression was upregulated in a high percentage of human tumors (lung > breast = ovarian > colon). Increased ALDH3B1 expression in tumor cells may confer a growth advantage or be the result of an induction mechanism mediated by increased oxidative stress. Subcellular localization of ALDH3B1 was predominantly cytosolic in tissues, with the exception of normal human lung and testis, in which localization appeared membrane-bound or membrane-associated. The specificity of ALDH3B1 distribution may prove to be directly related to the functional role of this enzyme in human tissues. (J Histochem Cytochem 58:765–783, 2010)  相似文献   

14.
The modulation of aldehyde dehydrogenase (ALDH) activity has been suggested as a promising option for the prevention or treatment of many diseases. To date, only few activating compounds of ALDHs have been described. In this regard, N‐(1,3‐benzodioxol‐5‐ylmethyl)?2,6‐dichlorobenzamide has been used to protect the heart against ischemia/reperfusion damage. In the search for new modulating ALDH molecules, the binding capability of different compounds to the active site of human aldehyde dehydrogenase class 1A1 (ALDH1A1) was analyzed by molecular docking, and their ability to modulate the activity of the enzyme was tested. Surprisingly, tamoxifen, an estrogen receptor antagonist used for breast cancer treatment, increased the activity and decreased the Km for NAD+ by about twofold in ALDH1A1. No drug effect on human ALDH2 or ALDH3A1 was attained, showing that tamoxifen was specific for ALDH1A1. Protection against thermal denaturation and competition with daidzin suggested that tamoxifen binds to the aldehyde site of ALDH1A1, resembling the interaction of N‐(1,3‐benzodioxol‐5‐ylmethyl)?2,6‐dichlorobenzamide with ALDH2. Further kinetic analysis indicated that tamoxifen activation may be related to an increase in the Kd for NADH, favoring a more rapid release of the coenzyme, which is the rate‐limiting step of the reaction for this isozyme. Therefore, tamoxifen might improve the antioxidant response, which is compromised in some diseases. Proteins 2015; 83:105–116. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
16.
Various lines of evidence have shown that ALDH3A1 (aldehyde dehydrogenase 3A1) plays a critical and multifaceted role in protecting the cornea from UV-induced oxidative stress. ALDH3A1 is a corneal crystallin, which is defined as a protein recruited into the cornea for structural purposes without losing its primary function (i.e. metabolism). Although the primary role of ALDH3A1 in the metabolism of toxic aldehydes has been clearly demonstrated, including the detoxification of aldehydes produced during UV-induced lipid peroxidation, the structural role of ALDH3A1 in the cornea remains elusive. We therefore examined the potential contribution of ALDH3A1 in maintaining the optical integrity of the cornea by suppressing the aggregation and/or inactivation of other proteins through chaperone-like activity and other protective mechanisms. We found that ALDH3A1 underwent a structural transition near physiological temperatures to form a partially unfolded conformation that is suggestive of chaperone activity. Although this structural transition alone did not correlate with any protection, ALDH3A1 substantially reduced the inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal and malondialdehyde when co-incubated with NADP(+), reinforcing the importance of the metabolic function of this corneal enzyme in the detoxification of toxic aldehydes. A large excess of ALDH3A1 also protected glucose-6-phosphate dehydrogenase from inactivation because of direct exposure to UVB light, which suggests that ALDH3A1 may shield other proteins from damaging UV rays. Collectively, these data demonstrate that ALDH3A1 can reduce protein inactivation and/or aggregation not only by detoxification of reactive aldehydes but also by directly absorbing UV energy. This study provides for the first time mechanistic evidence supporting the structural role of the corneal crystallin ALDH3A1 as a UV-absorbing constituent of the cornea.  相似文献   

17.
Methylated polycyclic aromatic hydrocarbons can be metabolically activated via benzylic hydroxylation and sulpho conjugation to reactive esters, which can induce mutations and tumours. Yet, further oxidation of the alcohol may compete with this toxification. We previously demonstrated that several human alcohol dehydrogenases (ADH1C, 2, 3 and 4) oxidise various benzylic alcohols (derived from alkylated pyrenes) to their aldehydes with high catalytic efficiency. However, all these ADHs also catalysed the reverse reaction, the reduction of the aldehydes to the alcohols, with comparable or higher efficiency. Thus, final detoxification requires elimination of the aldehydes by further biotransformation. We have expressed two human aldehyde dehydrogenases (ALDH2 and 3A1) in bacteria. All pyrene aldehydes studied (1-, 2- and 4-formylpyrene, 1-formyl-6-methylpyrene and 1-formyl-8-methylpyrene) were high-affinity substrates for ALDH2 (Km = 0.027–0.9 μM) as well as ALDH3A1 (Km = 0.78–11 μM). Catalytic efficiencies (kcat/Km) were higher for ALDH2 than ALDH3A1 by a moderate to a very large margin depending on the substrate. Most important, they were also substantially higher than the catalytic efficiencies of the various ADHs for the reduction the aldehydes to the alcohols. These kinetic properties ensure that ALDHs, and particularly ALDH2, can complete the ADH-mediated detoxification.  相似文献   

18.
Evidence is presented for six opossum ALDH1A genes, including four ALDH1A1-like genes on chromosome 6 and ALDH1A2- and ALDH1A3-like genes on chromosome 1. Predicted structures for the opossum aldehyde dehydrogenase (ALDH) subunits and the intron–exon boundaries for opossum ALDH genes showed a high degree of similarity with other mammalian ALDHs. Phylogenetic analyses supported the proposed designation of these opossum class 1 ALDHs as ALDH1A-like, ALDH1A2-like, and ALDH1A3-like and are therefore likely to play important roles in retinal and peroxidic aldehyde metabolism. Alignments of predicted opossum ALDH1A amino acid sequences with sheep ALDH1A1 and rat ALDH1A2 sequences demonstrated conservation of key residues previously shown to participate in catalysis and coenzyme binding. Amino acid substitution rates observed for family 1A ALDHs during vertebrate evolution indicated that ALDH1A2-like genes are evolving slower than ALDH1A1- and ALDH1A3-like genes. It is proposed that the common ancestor for ALDH1A genes predates the appearance of birds during vertebrate evolution.  相似文献   

19.
Evidence suggests that aldehydic molecules generated during lipid peroxidation (LPO) are causally involved in most pathophysiological processes associated with oxidative stress. 4-Hydroxy-2-nonenal (4-HNE), the LPO-derived product, is believed to be responsible for much of the cytotoxicity. To counteract the adverse effects of this aldehyde, many tissues have evolved cellular defense mechanisms, which include the aldehyde dehydrogenases (ALDHs). Our laboratory has previously characterized the tissue distribution and metabolic functions of ALDHs, including ALDH3A1, and demonstrated that these enzymes may play a significant role in protecting cells against 4-HNE. To further characterize the role of ALDH3A1 in the oxidative stress response, a rabbit corneal keratocyte cell line (TRK43) was stably transfected to overexpress human ALDH3A1. These cells were studied after treatment with 4-HNE to determine their abilities to: (a) maintain cell viability, (b) metabolize 4-HNE and its glutathione conjugate, (c) prevent 4-HNE-protein adduct formation, (d) prevent apoptosis, (e) maintain glutathione homeostasis, and (f) preserve proteasome function. The results demonstrated a protective role for ALDH3A1 against 4-HNE. Cell viability assays, morphological evaluations, and Western blot analyses of 4-HNE-adducted proteins revealed that ALDH3A1 expression protected cells from the adverse effects of 4-HNE. Based on the present results, it is apparent that ALDH3A1 provides exceptional protection from the adverse effects of pathophysiological concentrations of 4-HNE such as may occur during periods of oxidative stress.  相似文献   

20.
Aldehyde dehydrogenases (ALDHs) belong to a superfamily of NAD(P)+-dependent enzymes, which catalyze the oxidation of endogenous and exogenous aldehydes to their corresponding acids. Increased expression and/or activity of ALDHs, particularly ALDH1A1, have been reported to occur in human cancers. It is proposed that the metabolic function of ALDH1A1 confers the “stemness” properties to normal and cancer stem cells. Nevertheless, the identity of ALDH isozymes that contribute to the enhanced ALDH activity in specific types of human cancers remains to be elucidated. ALDH1B1 is a mitochondrial ALDH that metabolizes a wide range of aldehyde substrates including acetaldehyde and products of lipid peroxidation (LPO). In this study, we immunohistochemically examined the expression profile of ALDH1A1 and ALDH1B1 in human adenocarcinomas of colon (N = 40), lung (N = 30), breast (N = 33) and ovary (N = 33) using an NIH tissue array. The immunohistochemical expression of ALDH1A1 or ALDH1B1 in tumor tissues was scored by their intensity (scale = 1–3) and extensiveness (% of total cancer cells). Herein we report a 5.6-fold higher expression score for ALDH1B1 in cancerous tissues than that for ALDH1A1. Remarkably, 39 out of 40 colonic cancer specimens were positive for ALDH1B1 with a staining intensity of 2.8 ± 0.5. Our study demonstrates that ALDH1B1 is more profoundly expressed in the adenocarcinomas examined in this study relative to ALDH1A1 and that ALDH1B1 is dramatically upregulated in human colonic adenocarcinoma, making it a potential biomarker for human colon cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号