首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metabolic fingerprinting of salt-stressed tomatoes   总被引:20,自引:0,他引:20  
The aim of this study was to adopt the approach of metabolic fingerprinting through the use of Fourier transform infrared (FT-IR) spectroscopy and chemometrics to study the effect of salinity on tomato fruit. Two varieties of tomato were studied, Edkawy and Simge F1. Salinity treatment significantly reduced the relative growth rate of Simge F1 but had no significant effect on that of Edkawy. In both tomato varieties salt-treatment significantly reduced mean fruit fresh weight and size class but had no significant affect on total fruit number. Marketable yield was however reduced in both varieties due to the occurrence of blossom end rot in response to salinity. Whole fruit flesh extracts from control and salt-grown tomatoes were analysed using FT-IR spectroscopy. Each sample spectrum contained 882 variables, absorbance values at different wavenumbers, making visual analysis difficult and therefore machine learning methods were applied. The unsupervised clustering method, principal component analysis (PCA) showed no discrimination between the control and salt-treated fruit for either variety. The supervised method, discriminant function analysis (DFA) was able to classify control and salt-treated fruit in both varieties. Genetic algorithms (GA) were applied to identify discriminatory regions within the FT-IR spectra important for fruit classification. The GA models were able to classify control and salt-treated fruit with a typical error, when classifying the whole data set, of 9% in Edkawy and 5% in Simge F1. Key regions were identified within the spectra corresponding to nitrile containing compounds and amino radicals. The application of GA enabled the identification of functional groups of potential importance in relation to the response of tomato to salinity.  相似文献   

2.
Morphology and molecular phylogeny constitute the structural elements of diatom taxonomy. These approaches do not, however, give information on the functioning of taxa. Additional methods to serve a more integrated and wide-ranging taxonomy have therefore been called for. Metabolic fingerprinting is one approach used within the field of metabolomics, often applied in classification of samples. Here we apply metabolic fingerprinting in a taxonomic study of a cryptic diatom species. Strains of the cosmopolitan diatom Chaetoceros socialis from two geographical areas; the north-east Atlantic and Arctic and the Gulf of Naples, were cultivated at three different temperatures; 2.5, 8 and 13°C. The strains from the two different geographical areas exhibited different growth rates as well as different photosynthetic efficiencies. Algal extracts, collected at the end of the growth experiments, were analysed by Ultra-Performance Liquid Chromatography High Resolution Mass Spectrometry. The two groups of strains were separated by principal component analysis of their metabolic fingerprints. Analysis of the data revealed both qualitative and quantitative differences in metabolite markers. These phenotypic differences reinforce differences also found for morphology, phylogenetic markers and growth rates, and point at different adaptive characteristics in organisms living under different temperature regimes.  相似文献   

3.
When an animal has to meet increased demands on its working capacity, for example, for thermoregulation or parental care, two strategies are available. The animal can reallocate energy from costly maintenance processes - such as immunological defence or DNA repair systems (compensation hypothesis) - or it may try to increase the rate of energy intake or efficiency of digestion by increasing the size of the alimentary tract (increased-intake hypothesis). By manipulating brood size, I affected parental effort among marsh tits (Parus palustris) as demonstrated by a significant increase in parental feeding rate with experimental brood size. Basal metabolic rate (BMR) increased both with manipulated brood size and individual feeding rate, supporting the predictions from the increased-intake hypothesis. Furthermore, I found a direct positive relation between BMR and energy expenditure, measured with the help of the doubly labelled water technique. The cost of achieving a higher working capacity is substantial since BMR increases more quickly than the surplus energy available for work. Since the cost of a high sustained workload was not primarily dependent on a reallocation of energy away from maintenance, such a cost should be searched for among the detrimental effects of a high metabolic rate per se, for example, an increased oxidative damage to DNA, proteins and lipids.  相似文献   

4.
5.
6.
Metabolic fingerprinting to discriminate diseases of stored carrots   总被引:1,自引:0,他引:1  
Volatile metabolites from headspace gas of carrot cv. Vita‐treat inoculated with water or four different pathogens Botrytis cinerea, Erwinia carotovora subsp. carotovora, Aspergillus niger and Fusarium avenaceum were profiled using gas chromatography and mass spectrometry to develop a technology to discriminate diseases. The inoculation of carrot roots with water or different pathogens released a total of 137 different volatile metabolites. Among them, 39 compounds were relatively consistent and 11 were specific to one or more diseases/inoculations. E. carotovora subsp. carotovora produced seven disease‐specific metabolites: 1‐butanol, 3‐methyl; 1‐pentanol; 1‐propanol, 2‐methyl; 2,3‐butanedione; boronic acid, ethyl; butane, 1‐methoxy‐3‐methyl; and ethane, ethoxy. Some metabolites were disease/inoculation discriminatory and were not detected in all treatments: 1,2‐dimethoxy‐ethene was common in carrots inoculated with E. carotovora subsp. carotovora and B. cinerea, while 2‐butanone, 3‐chloro‐4‐hydroxy‐1,4‐diphenyl was common in carrots inoculated with E. carotovora subsp. carotovora, F. avenaceum and water‐inoculated control. The significant mass ions, based on univariate analysis, from a total of 150 (46–195 m/z) and compounds from a total of 32 were further subjected to stepwise discriminant analysis and discriminant analysis. The models for 3 days after inoculation (DAI) were better than those for 6 DAI and 3 + 6 DAI, where up to 90% of the observations were correctly classified into respective inoculations. The disease‐discriminatory compounds from different diseases/inoculations and discriminant analysis models developed here have the potential for the early detection and discrimination of postharvest diseases of carrot cv. Vita‐treat, after validation under commercial conditions.  相似文献   

7.
8.

Introduction

Oil palm (E. guineensis), the most consumed vegetable oil in the world, is affected by fatal yellowing (FY), a condition that can lead to the plant’s death. Although studies have been performed since the 1980s, including investigations of biotic and abiotic factors, FY’s cause remains unknown and efforts in researches are still necessary.

Objectives

This work aims to investigate the metabolic expression in plants affected by FY using an untargeted metabolomics approach.

Method

Metabolic fingerprinting analysis of oil palm leaves was performed using ultra high liquid chromatography–electrospray ionization–mass spectrometry (UHPLC–ESI–MS). Chemometric analysis, using principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), was applied to data analysis. Metabolites identification was performed by high resolution mass spectrometry (HRMS), MS/MS experiments and comparison with databases and literature.

Results

Metabolomics analysis based on MS detected more than 50 metabolites in oil palm leaf samples. PCA and PLS-DS analysis provided group segregation and classification of symptomatic and non-symptomatic FY samples, with a great external validation of the results. Nine differentially expressed metabolites were identified as glycerophosphorylcholine, arginine, asparagine, apigenin 6,8-di-C-hexose, tyramine, chlorophyllide, 1,2-dihexanoyl-sn-glycero-3-phosphoethanolamine, proline and malvidin 3-glucoside-5-(6″-malonylglucoside). Metabolic pathways and biological importance of those metabolites were assigned.

Conclusion

Nine metabolites were detected in a higher concentration in non-symptomatic FY plants. Seven are related to stress factors i.e. plant defense and nutrient absorption, which can be affected by the metabolic depression of these compounds. Two of those metabolites (glycerophosphorylcholine and 1,2-dihexanoyl-sn-glycero-3-phosphoethanolamine) are presented as potential biomarkers, since they have no known direct relation to plant stress.
  相似文献   

9.
10.
11.
Application of blood plasma metabolites fingerprinting for the diagnostic of the 2nd stage of prostate cancer has been investigated. The diagnostic sensitivity (95%), specificity (96.7%) and accuracy (95.7%) of the metabolic fingerprinting were much higher then those for the ELISA PSA test (35%, 83.3% and 51.7%, respectively) performed for the same patients. Area under the ROC curve (0.994) suggests that the proposed approach based on the metabolic fingerprinting is effective and applicable in clinical practice.  相似文献   

12.
13.
Phylogenetic analysis of morphology in Prunus reveals extensive homoplasy   总被引:1,自引:0,他引:1  
Prunus is a large and economically important genus with considerable morphological variation. The evolution of vegetative and reproductive characters are examined here by parsimony reconstruction on trees obtained from data of ITS, trnL-trnF, trnS-trnG, and 25 morphological characters of 37 species of Prunus and representatives of eight other genera of Rosaceae. Prunus grayana is supported as the sister species to the rest of Prunus and the common ancestor of Prunus is reconstructed as having deciduous and serrated leaves, leafy racemes and fruit with well-developed pericarp. All diagnostic characters used in classification of the raceme-bearing species show some degree of convergent evolution and do not reflect phylogenetic relatedness. Some character states, such as evergreen foliage and entire leaf margin, are likely adaptations to environments with higher humidity and mean temperature. However, these hypotheses need to be tested by including species formerly classified in genus Pygeum, which were not available for this study. A clade consisting of subgenera Prunus, Amygdalus, Emplectocladus and section Microcerasus (formerly in subgenus Cerasus) is characterized by having axillary buds organized in groups of three, two of which give rise to flowers or inflorescences and one to a vegetative shoot. Fruits with thin pericarps are common in Prunus but they arose more than once independently. Dry fruits also evolved more than once, and only in species of Prunus living in arid environments, suggesting that this feature is another example of adaptation. Maddenia hypoleuca is nested within Prunus and the morphological characters used to segregate it from Prunus have been misinterpreted or are also found in species of Prunus previously classified in genus Pygeum.  相似文献   

14.
Explaining how the small molecule auxin triggers diverse yet specific responses is a long-standing challenge in plant biology. An essential step in auxin response is the degradation of Auxin/Indole-3-Acetic Acid (Aux/IAA, referred to hereafter as IAA) repressor proteins through interaction with auxin receptors. To systematically characterize diversity in degradation behaviors among IAA|receptor pairs, we engineered auxin-induced degradation of plant IAA proteins in yeast (Saccharomyces cerevisiae). We found that IAA degradation dynamics vary widely, depending on which receptor is present, and are not encoded solely by the degron-containing domain II. To facilitate this and future studies, we identified a mathematical model able to quantitatively describe IAA degradation behavior in a single parameter. Together, our results demonstrate the remarkable tunability conferred by specific configurations of the auxin response pathway.  相似文献   

15.
DNA fingerprinting was used to characterize patterns of paternity in two populations of Ctenomys talarum from Buenos Aires Province, Argentina. The multilocus probe PV47-2 was used to detect variation in genomic DNA extracted from 12 females, their 32 offspring, and 14 putative sires. For 11 out of 12 litters examined, a single male capable of providing all nonmaternal bands was identified. Within each study population, individual males sired more than one litter, suggesting that C. talarum is polygynous. No evidence of multiple paternity of litters was found. High band-sharing values among females suggest that further research is needed to assess the population genetic structure of this species.  相似文献   

16.
17.
18.
No metabolic side-effects of clinical significance have been reported during a 5-year study of growth hormone (GH) therapy in children with GH deficiency, Turner syndrome, idiopathic short stature or chronic renal insufficiency. In particular, insulin levels increase but remain within the normal range, as do glucose and haemoglobin A(1c). A recent study showed that the effects of growth on insulin sensitivity in prepubertal children with idiopathic short stature represent the changes in carbohydrate tolerance observed during normal adolescence. Thus, GH treatment may lead to prolongation of the physiological state of insulin resistance observed in normal puberty. Insulin levels during the fasting state and 2 h after a standard glucose load showed no further rise after the first 3 years of continuous GH therapy. The hyperinsulinaemia observed during GH therapy may, therefore, amplify the anabolic effects of insulin on protein metabolism during puberty.  相似文献   

19.
Ectonucleotide pyrophosphate phosphodiesterase (ENPP1) has been shown to negatively modulate insulin receptor and to induce cellular insulin resistance when overexpressed in various cell types. Systemic insulin resistance has also been observed when ENPP1 is overexpressed in multiple tissues of transgenic models and attributed largely to tissue insulin resistance induced in skeletal muscle and liver. Another key tissue in regulating glucose and lipid metabolism is adipose tissue (AT). Interestingly, obese patients with insulin resistance have been reported to have increased AT ENPP1 expression. However, the specific effects of ENPP1 in AT have not been studied. To better understand the specific role of AT ENPP1 on systemic metabolism, we have created a transgenic mouse model (C57/Bl6 background) with targeted overexpression of human ENPP1 in adipocytes, using aP2 promoter in the transgene construct (AdiposeENPP1-TG). Using either regular chow or pair-feeding protocol with 60% fat diet, we compared body fat content and distribution and insulin signaling in adipose, muscle, and liver tissues of AdiposeENPP1-TG and wild-type (WT) siblings. We also compared response to intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT). Our results show no changes in Adipose ENPP1-TG mice fed a regular chow diet. After high-fat diet with pair-feeding protocol, AdiposeENPP1-TG and WT mice had similar weights. However, AdiposeENPP1-TG mice developed fatty liver in association with changes in AT characterized by smaller adipocyte size and decreased phosphorylation of insulin receptor Tyr(1361) and Akt Ser(473). These changes in AT function and fat distribution were associated with systemic abnormalities of lipid and glucose metabolism, including increased plasma concentrations of fatty acid, triglyceride, plasma glucose, and insulin during IPGTT and decreased glucose suppression during ITT. Thus, our results show that, in the presence of a high-fat diet, ENPP1 overexpression in adipocytes induces fatty liver, hyperlipidemia, and dysglycemia, thus recapitulating key manifestations of the metabolic syndrome.  相似文献   

20.
Neospora caninum is a world-wide parasite that causes neuromuscular disorders in dogs and bovine abortion. Biological diversity among isolates has been proved in both in vivo and in vitro studies. In contrast, little is known about the genetic diversity of this parasite. Microsatellite sequence analysis constitutes a suitable tool that has been used for the genetic analysis of other apicomplexan parasites. In this report, we describe the identification and analysis of 13 microsatellite loci from N. caninum DNA sequences deposited in public databases, which were evaluated with the use of 9 isolates grown in vitro. One microsatellite was monomorphic, and the remaining 12 loci exhibited 3 to 9 separate alleles. Multilocus analysis showed that each of the 9 isolates investigated here displayed a unique profile and revealed no association between the genetic similarity and host or geographic origin. The multilocus analysis approach described here might nevertheless provide the powerful tool needed to study the genetic complexity of N. caninum and the molecular epidemiology of neosporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号