首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homologous proteins have regions which retain the same general fold and regions where the folds differ. For pairs of distantly related proteins (residue identity approximately 20%), the regions with the same fold may comprise less than half of each molecule. The regions with the same general fold differ in structure by amounts that increase as the amino acid sequences diverge. The root mean square deviation in the positions of the main chain atoms, delta, is related to the fraction of mutated residues, H, by the expression: delta(A) = 0.40 e1.87H.  相似文献   

2.
Motif3D is a web-based protein structure viewer designed to allow sequence motifs, and in particular those contained in the fingerprints of the PRINTS database, to be visualised on three-dimensional (3D) structures. Additional functionality is provided for the rhodopsin-like G protein-coupled receptors, enabling fingerprint motifs of any of the receptors in this family to be mapped onto the single structure available, that of bovine rhodopsin. Motif3D can be used via the web interface available at: http://www.bioinf.man.ac.uk/dbbrowser/motif3d/motif3d.html.  相似文献   

3.
Fifty-two 3D structures of Ig-like domains covering the immunoglobulin fold family (IgFF) were compared and classified according to the conservation of their secondary structures. Members of the IgFF are distantly related proteins or evolutionarily unrelated proteins with a similar fold, the Ig fold. In this paper, a multiple structural alignment of the conserved common core is described and the correlation between corresponding sequences is discussed. While the members of the IgFF exhibit wide heterogeneity in terms of tissue and species distribution or functional implications, the 3D structures of these domains are far more conserved than their sequences. We define topologically equivalent residues in the Ig-like domains, describe the hydrophobic common cores and discuss the presence of additional strands. The disulfide bridges, not necessary for the stability of the Ig fold, may have an effect on the compactness of the domains. Based upon sequence and structure analysis, we propose the introduction of two new subtypes (C3 and C4) to the previous classifications, in addition to a new global structural classification. The very low mean sequence identity between subgroups of the IgFF suggests the occurrence of both divergent and convergent evolutionary processes, explaining the wide diversity of the superfamily. Finally, this review suggest that hydrophobic residues constituting the common hydrophobic cores are important clues to explain how highly divergent sequences can adopt a similar fold.  相似文献   

4.
Cn3D: sequence and structure views for Entrez   总被引:9,自引:0,他引:9  
  相似文献   

5.
Protein 3D structure computed from evolutionary sequence variation   总被引:3,自引:0,他引:3  
The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues., including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7–4.8 Å Cα-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein structures, new strategies in protein and drug design, and the identification of functional genetic variants in normal and disease genomes.  相似文献   

6.
The relation between amino acid sequence and protein conformation   总被引:1,自引:0,他引:1  
  相似文献   

7.
A non-sliding and sliding model of illegitimate recombination utilizing recent experimentally determined free energies are presented. In each model two random sequences of nucleotide bases were brought into contact and the free energy of stabilization was computed.Combinatorial and Monte-Carlo versions were developed to investigate the role of base sequence complementarity in regions of non-homology over varying lengths. It was found that short sequences of complementarity enhanced the frequency of recombination. When the energy threshold wasequivalent to ten contiguous base pairs, the results conformed to experimental recombination frequencies. Recombination is slightly enhanced by increasing the size of exposed contact regions. Skewing the G-C composition does not significantly effect recombination. There was a significant difference in frequencies between sliding and non-sliding models. Application of the models to other genetic events such as nonhomologous sticking of circular DNA and hair-pin formation indicate that these events are essentially non-random processes.  相似文献   

8.
杨树木质素合成酶CCR基因的序列分析及蛋白结构预测   总被引:1,自引:0,他引:1  
利用RT—PCR从欧美杨107次生木质部中克隆出-961bp的CCR基因片段。通过生物信息学软件对该序列的核苷酸序列、拟翻译的氨基酸序列的疏水性、残基带电量及表面暴露区、蛋白质二级结构、亚细胞定位及三维结构等进行了初步分析预测。结果表明该CCR基因含一个编码301个氨基酸的完整开放阅读框,其成熟蛋白为亲水性的、主要存在于细胞膜,具有大多数植物CCR蛋白普遍存在的KNWYCYGK的保守性基序,其二级结构中共包含12个α螺旋,20个β折叠,11个卷曲,并构建了其三维结构图。  相似文献   

9.
About 200 mRNA sequences of Escherichia coli and human with matching protein secondary structure data were studied. The mRNA folding for each native sequence and for corresponding randomized sequences was calculated through free energy minimization. We have found that the folding energy of mRNA segments in different protein secondary structures is significantly different. The average Z score is more negative for regular secondary structure (alpha-helix and beta-strand) than that for coil. This suggests that the codon choice in native mRNA sequence coding for protein regular structure contributes more to the mRNA folding stability.  相似文献   

10.
Although multiple sequence alignments (MSAs) are essential for a wide range of applications from structure modeling to prediction of functional sites, construction of accurate MSAs for distantly related proteins remains a largely unsolved problem. The rapidly increasing database of spatial structures is a valuable source to improve alignment quality. We explore the use of 3D structural information to guide sequence alignments constructed by our MSA program PROMALS. The resulting tool, PROMALS3D, automatically identifies homologs with known 3D structures for the input sequences, derives structural constraints through structure-based alignments and combines them with sequence constraints to construct consistency-based multiple sequence alignments. The output is a consensus alignment that brings together sequence and structural information about input proteins and their homologs. PROMALS3D can also align sequences of multiple input structures, with the output representing a multiple structure-based alignment refined in combination with sequence constraints. The advantage of PROMALS3D is that it gives researchers an easy way to produce high-quality alignments consistent with both sequences and structures of proteins. PROMALS3D outperforms a number of existing methods for constructing multiple sequence or structural alignments using both reference-dependent and reference-independent evaluation methods.  相似文献   

11.
Changes in the secondary structure upon adsorption of beta-casein (betaCN) and of distinct parts of its sequence were investigated by far-ultraviolet circular dichroism in order to find suggested relationships with foam and emulsion-forming and -stabilising properties of the same protein/peptides. A teflon/water interface was used as a model system for foam and emulsion interfaces. The maximum surface loads of beta-casein and its derived peptides were investigated. The main secondary structure element of all samples in solution was the unordered random coil, but upon adsorption ordered structure, especially alpha-helix, was induced. At lower pH more ordered structure was induced, just as at lower ionic strength. Apparently, both hydrophobic and hydrophilic groups influence the change of secondary structure induced at a hydrophobic interface. The results suggest that the hydrophobic C-terminal half of betaCN accounted for the high maximum surface load on teflon, while the N-terminal half of betaCN seemed to be responsible for the secondary structure induction upon adsorption. A relation between the maximum surface load and the foam-stabilising properties was found, but an influence of the secondary structure properties on the foam and emulsion-forming and -stabilising properties was not observed.  相似文献   

12.
13.
14.
Down-regulation of the gene encoding 4-coumarate 3-hydroxylase (C3H) in alfalfa massively but predictably increased the proportion of p-hydroxyphenyl (P) units relative to the normally dominant guaiacyl (G) and syringyl (S) units. Stem levels of up to approximately 65% P (from wild-type levels of approximately 1%) resulting from down-regulation of C3H were measured by traditional degradative analyses as well as two-dimensional 13C-1H correlative NMR methods. Such levels put these transgenics well beyond the P:G:S compositional bounds of normal plants; p-hydroxyphenyl levels are reported to reach a maximum of 30% in gymnosperm severe compression wood zones but are limited to a few percent in dicots. NMR also revealed structural differences in the interunit linkage distribution that characterizes a lignin polymer. Lower levels of key beta-aryl ether units were relatively augmented by higher levels of phenylcoumarans and resinols. The C3H-deficient alfalfa lignins were devoid of beta-1 coupling products, highlighting the significant differences in the reaction course for p-coumaryl alcohol versus the two normally dominant monolignols, coniferyl and sinapyl alcohols. A larger range of dibenzodioxocin structures was evident in conjunction with an approximate doubling of their proportion. The nature of each of the structural units was revealed by long range 13C-1H correlation experiments. For example, although beta-ethers resulted from the coupling of all three monolignols with the growing polymer, phenylcoumarans were formed almost solely from coupling reactions involving p-coumaryl alcohol; they resulted from both coniferyl and sinapyl alcohol in the wild-type plants. Such structural differences form a basis for explaining differences in digestibility and pulping performance of C3H-deficient plants.  相似文献   

15.
16.
An electron microscope study of thin sections of interphase cells has revealed the following:- Circular pores are formed in the double nuclear envelope by continuities between the inner and outer membranes which permit contact between the nucleoplasm and the cytoplasm unmediated by a well defined membrane. The pores, seen in sections normal to the nuclear envelope, are profiles of the ring-shaped structures described by others and seen in tangential section. The inner and outer nuclear membranes are continuous with one another and enclose the perinuclear space. The pores contain a diffuse, faintly particulate material. A survey of cells of the rat derived from the embryonic ectoderm, mesoderm, and endoderm, and of a protozoan and an alga has revealed pores in all tissues examined, without exception. It is concluded that pores in the nuclear envelope are a fundamental feature of all resting cells. In certain cells, the outer nuclear membrane is continuous with membranes of the endoplasmic reticulum, hence the perinuclear space is continuous with cavities enclosed by those membranes. There are indications that this is true for all resting cells, at least in a transitory way. On the basis of these observations, the hypothesis is made that two pathways of exchange exist between the nucleus and the cytoplasm; by way of the perinuclear space and cavities of the endoplasmic reticulum and by way of the pores in the nuclear envelope.  相似文献   

17.
Cultured skin fibroblasts from patients with the lysosomal storage disease galactosialidosis lack a 54-kDa protein which is a precursor of 32-kDa and 20-kDa proteins, which immunoprecipitate with human anti-beta-galactosidase antiserum. The lack of a 32-kDa "protective protein" results in a combined deficiency of beta-galactosidase and sialidase. The mechanism of protection of lysosomal beta-galactosidase against proteolytic degradation is elucidated by sucrose density gradient centrifugation and immunoprecipitation studies. In normal fibroblasts at the low intralysosomal pH, more than 85% of beta-galactosidase exists as a high molecular weight (600-700 kDa) multimer and about 10% as a monomer of 64-kDa. In mutant cells from galactosialidosis patients, the residual enzyme activity, about 10%, is present as a monomer and no multimer exists. After addition of the 54-kDa precursor form of the protective protein, the density pattern of beta-galactosidase in galactosialidosis cells is normalized. Immunoprecipitation studies after sucrose density gradient centrifugation on homogenate and on purified beta-galactosidase from normal fibroblasts show that the protective protein is associated only with the multimeric form of beta-galactosidase. We propose that intralysosomal protection against proteolysis of beta-galactosidase and sialidase is accomplished by aggregation into a high molecular weight complex consisting of multimeric beta-galactosidase, sialidase, and protective protein. The genetic deficiency of the latter, as in galactosialidosis, results in a rapid degradation of monomeric beta-galactosidase and a loss of sialidase activity.  相似文献   

18.
This study examines the structure of residual and dissolved lignins from Pinus pinaster pulps obtained at different degrees of delignification by laboratory conventional kraft pulping. The cooking H factor was varied from 85 to 8049. The residual and dissolved lignin samples were characterised by elemental analysis, residual carbohydrate content, permanganate oxidation and 13C NMR spectroscopy. The reflectance factor of the pulps was also determined in order to tentatively correlate the delignification degree and residual lignin structure with the pulp colour. The obtained results confirmed that the delignification degree increases the condensation of the lignin structure, which might have an influence upon the observed increased pulp colour. The lack of selectivity of kraft pulping process in the case of more delignified pulps was also shown.  相似文献   

19.
Ecosystems function in a series of feedback loops that can change or maintain vegetation structure. Vegetation structure influences the ecological niche space available to animals, shaping many aspects of behaviour and reproduction. In turn, animals perform ecological functions that shape vegetation structure. However, most studies concerning three-dimensional vegetation structure and animal ecology consider only a single direction of this relationship. Here, we review these separate lines of research and integrate them into a unified concept that describes a feedback mechanism. We also show how remote sensing and animal tracking technologies are now available at the global scale to describe feedback loops and their consequences for ecosystem functioning. An improved understanding of how animals interact with vegetation structure in feedback loops is needed to conserve ecosystems that face major disruptions in response to climate and land-use change.  相似文献   

20.
In the fifty years since the organizational hypothesis was proposed, many sex differences have been found in behavior as well as structure of the brain that depend on the organizational effects of gonadal hormones early in development. Remarkably, in most cases we do not understand how the two are related. This paper makes the case that overstating the magnitude or constancy of sex differences in behavior and too narrowly interpreting the functional consequences of structural differences are significant roadblocks in resolving this issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号