首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundSeveral different small molecules have been used to target the DNA helix in order to treat the diseases caused by its mutation. Guanidinium(Gdm+) and urea based drugs have been used for the diseases related to central nervous system, also as the anti-inflammatory and chemotherapeutic agent. However, the role of Gdm+ and urea in the stabilization/destabilization of DNA is not well understood.MethodsSpectroscopic techniques along with molecular dynamics (MD) simulation have been performed on different sequences of DNA in the presence of guanidinium chloride (GdmCl) and urea to decode the binding of denaturants with DNA and the role of hydrogen bond with the different regions of DNA in its stability/destability.Results and conclusionOur study reveals that, Gdm+ of GdmCl and urea both intrudes into the groove region of DNA along with the interaction with its phosphate backbone. However, interaction of Gdm+ and urea with the nucleobases in the groove region is different. Gdm+ forms the intra-strand hydrogen bond with the central region of the both sequences of DNA whereas inter-strand hydrogen bond along with water assisted hydrogen bond takes place in the case of urea. The intra-strand hydrogen bond formation capability of Gdm+ with the nucleobases in the minor groove of DNA decreases its groove width which probably causes the stabilization of B-DNA in GdmCl. In contrast, the propensity of the formation of inter-strand hydrogen bond of urea with the nucleobases in the groove region of DNA without affecting the groove width destabilizes B-DNA as compared to GdmCl. This study depicts that the opposite effect of GdmCl and urea on the stability is a general property of B-DNA. However, the extent of stabilization/destabilization of DNA in Gdm+ and urea depend on its sequence probably due to the difference in the intra/inter-strand hydrogen bonding with different bases present in both the sequences of DNA.General significanceThe information obtained from this study will be useful for the designing of Gdm+ based drug molecule which can target the DNA more specifically and selectively.  相似文献   

2.
Qiang Shao 《Proteins》2014,82(6):944-953
TFE, 2,2,2‐trifluoroethanol, and guanidinium (Gdm+) are two typical osmolytes. A great number of experimental and theoretical studies have shown that TFE and Gdm+ can accumulate on protein surface and thus exert their effects on protein structure in their respective solutions. Their accumulation manners are, however, different: the hydrophobic property of TFE makes its accumulation more preferential around hydrophobic side chains than other types whereas Gdm+ prefers to stack strongly against the planar side chains but only weakly binds to the hydrophobic groups. The present molecular dynamics simulation study shows a novel test to investigate the combined effects of TFE and Gdm+ on protein structure in mixed guanidinium/TFE solution. The results indicate that the accumulation of TFE is more competitive than Gdm+ in either GdmSCN/TFE or GdmCl/TFE solution. The preceding accumulation of TFE around protein surface limits the approach of Gdm+ and water to protein. As a result, the hydrogen bonding between Gdm+ and water to protein is highly forbidden and the secondary structure stability of protein is strongly enhanced. In contrast, without the presence of TFE, the protein structure is largely denatured in similarly concentrated GdmSCN or GdmCl solution. Proteins 2014; 82:944–953. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The stability and dynamics of a double-stranded DNA (dsDNA) is affected by the preferential occupancy of small monovalent molecular ions. Small metal and molecular ions such as sodium and alkyl ammonium have crucial biological functions in human body, affect the thermodynamic stability of the duplex DNA and exhibit preferential binding. Here, using atomistic molecular dynamics simulations, we investigate the preferential binding of metal ion such as Na+ and molecular ions such as tetramethyl ammonium (TMA+) and 2-hydroxy-N,N,N-trimethylethanaminium (CHO+) to double-stranded DNA. The thermodynamic driving force for a particular molecular ion-DNA interaction is determined by decomposing the free energy of binding into its entropic and enthalpic contributions. Our simulations show that each of these molecular ions preferentially binds to the minor groove of the DNA and the extent of binding is highest for CHO+. The ion binding processes are found to be entropically favourable. In addition, the contribution of hydrophobic effects towards the entropic stabilisation (in case of TMA+) and the effect of hydrogen bonding contributing to enthalpic stabilisation (in case of CHO+) have also been investigated.  相似文献   

4.
Abstract

Molecular modeling and energy minimisation calculations have been used to investigate the interaction of chromium(III) complexes in different ligand environments with various sequences of B-DNA. The complexes are [Cr(salen)(H2O)2]+; salen denotes 1, 2 bis-salicylideneaminoethane, [Cr(salprn)(H2O)2]+; salprn denotes 1, 3 bis- salicylideneamino-propane, [Cr(phen)3]3+; phen denotes 1, 10 phenanthroline and [Cr(en)3]3+; en denotes eth- ylenediamine. All the chromium(III) complexes are interacted with the minor groove and major groove of d(AT)12, d(CGCGAATTCGCG)2 and d(GC)12 sequences of DNA. The binding energy and hydrogen bond parameters of DNA-Cr complex adduct in both the groove have been determined using molecular mechanics approach. The binding energy and formation of hydrogen bonds between chromium(III) complex and DNA has shown that all complexes of chromium(III) prefer minor groove interaction as the favourable binding mode.  相似文献   

5.
Abstract

The unrestrained molecular dynamics simulation of the triple helical DNA with mix sequences d(GACTGGTGAC)?d(CTGACCACTG)*d (GACTGGTGAC), using the particle mesh Ewald sum, is presented here. The Ewald summation method effectively eliminates the usual “cut-off” of the long—range interactions and allowed us to evaluate the full effect of the electrostatic forces. The AMBER5.0 force field has been used during the simulation in solvent. The MD results support a dynamically stable model of DNA triplex over the entire length of the trajectory. The duplex structure assumes the conformation, which is very close to B-DNA. In mixed sequences the purine bases occurs in both strand of DNA duplex. The bases of third strand do not favor the Hoogsteen or/and reverse Hoogsteen type of Hydrogen bonding but they form hydrogen bonds with the bases of both the strand of DNA duplex. The orientation of the third strand is parallel to one of the strand of duplex and all nucleotides (C, A, G & T) show isomorphic behavior with respect to the DNA duplex. The conformation of all the three strands is almost same except few exceptions. Due to interaction of third strand the conformational change in the duplex structure and a finite amount of displacement in the W-C base pairs have been observed. The conformational variation of the back bone torsion angles and helicoidal parameters, groove widths have been discussed. The sequence—dependent effects on local conformation, helicoidal and morphological structure, width of the grooves of DNA helix may have important implication for understanding the functional energetics and specificity of interactions of DNA and its triplexes with proteins, pharmaceutical agents and other legends.  相似文献   

6.
A large amount of experimental evidence is available on the effect of magnesium ions on the structure and stability of DNA double helix. Less is known, however, on how these ions affect the stability and dynamics of the molecule. The static time average pictures from X-ray structures or the quantum chemical energy minimized structures lack understanding of the dynamic DNA–ion interaction. The present work addresses these questions by molecular dynamics simulation studies on two DNA duplexes and their interaction with magnesium ions. Results show typical B-DNA character with occasional excursions to deviated states. We detected expected stability of the duplexes in terms of backbone conformations and base pair parameter by the CHARMM-27 force field. Ion environment analysis shows that Mg2+ retains the coordination sphere throughout the simulation with a preference for major groove over minor. An extensive analysis of the influence of the Mg2+ ion shows no evidence of the popular predictions of groove width narrowing by dipositive metal ion. The major groove atoms show higher occupancy and residence time compared to minor groove for magnesium, where no such distinction is found for the charge neutralizing Na+ ions. The determining factor of Mg2+ ion’s choice in DNA binding site evolves as the steric hindrance faced by the bulky hexahydrated cation where wider major groove gets the preference. We have shown that in case of binding of Mg2+ to DNA non electrostatic contributions play a major role.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:5  相似文献   

7.
The Hsp100 chaperones ClpB and Hsp104 utilize the energy from ATP hydrolysis to reactivate aggregated proteins in concert with the DnaK/Hsp70 chaperone system, thereby playing an important role in protein quality control. They belong to the family of AAA+ proteins (ATPases associated with various cellular activities), possess two nucleotide binding domains per monomer (NBD1 and NBD2), and oligomerize into hexameric ring complexes. Furthermore, Hsp104 is involved in yeast prion propagation and inheritance. It is well established that low concentrations of guanidinium chloride (GdmCl) inhibit the ATPase activity of Hsp104, leading to so called “prion curing,” the loss of prion-related phenotypes. Here, we present mechanistic details about the Hsp100 chaperone inhibition by GdmCl using the Hsp104 homolog ClpB from Thermus thermophilus. Initially, we demonstrate that NBD1 of ClpB, which was previously considered inactive as a separately expressed construct, is a fully active ATPase on its own. Next, we show that only NBD1, but not NBD2, is affected by GdmCl. We present a crystal structure of ClpB NBD1 in complex with GdmCl and ADP, showing that the Gdm+ ion binds specifically to the active site of NBD1. A conserved essential glutamate residue is involved in this interaction. Additionally, Gdm+ interacts directly with the nucleotide, thereby increasing the nucleotide binding affinity of NBD1. We propose that both the interference with the essential glutamate and the modulation of nucleotide binding properties in NBD1 is responsible for the GdmCl-specific inhibition of Hsp100 chaperones.  相似文献   

8.
Abstract

Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 Å from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.  相似文献   

9.
The interaction of letrozole, an efficient and safe aromatase inhibitor, with herring sperm DNA (hsDNA) was investigated in vitro through spectroscopy analysis and molecular modeling to elucidate the binding mechanism of anticancer drugs and DNA. The binding constant and the number of binding sites were 2.13 × 104 M?1 and 1.09, respectively, at 298 K. Thermodynamic parameters (ΔG, ΔH and ΔS) exhibited negative values, which indicated that binding was spontaneous and Van der Waals forces and hydrogen bond were the main interaction forces. Fourier transform infrared spectroscopy and other spectroscopy analysis methods illustrated that letrozole could intercalate into the phosphate backbone of hsDNA and interact with the nitrogenous bases. Consistent with the experimental findings, molecular modeling results demonstrated that the interaction was dominated by intercalation and hydrogen bonding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In performing protein-denaturation experiments, it is common to employ different kinds of denaturants interchangeably. We make use of molecular dynamics simulations of Protein L in water, in urea, and in guanidinium chloride (GdmCl) to ascertain if there are any structural differences in the associated unfolding processes. The simulation of proteins in solutions of GdmCl is complicated by the large number of charges involved, making it difficult to set up a realistic force field. Furthermore, at high concentrations of this denaturant, the motion of the solvent slows considerably. The simulations show that the unfolding mechanism depends on the denaturing agent: in urea the β-sheet is destabilized first, whereas in GdmCl, it is the α-helix. Moreover, whereas urea interacts with the protein accumulating in the first solvation shell, GdmCl displays a longer-range electrostatic effect that does not perturb the structure of the solvent close to the protein.  相似文献   

11.
N V Kumar  G Govil 《Biopolymers》1984,23(10):1995-2008
With a view to understanding the role of hydrogen bonds in the recognition of nucleic acids by proteins, hydrogen bonding between the bases and base pairs of nucleic acids and the amino acids (Asn, Gln, Asp and Glu, and charged residues Arg+, Glu?, and Asp?) has been studied by a second-order perturbation theory. Binding energies have been calculated for all possible configurations involving a pair of hydrogen bonds between the base (or base pair) and the amino acid residue. Our results show that the hydrogen bonding in these cases has a large contribution from electrostatic interaction. In general, the charged amino acids, compared to the uncharged ones, form more stable complexes with bases or base pairs. The hydrogen-bond energies are an order of magnitude smaller than the Coulombic interaction energies between basic amino acids (Lys+, Arg+, and His+) and the phosphate groups of nucleic acids. The stabilities of the complexes of amino acids Asn, Gln, Asp, and Glu with bases are in the order: G–X > C–X > A–X U–X or T–X, and G · C–X > A · T(U)–X, where X is one of these amino acid residues. It has been shown that Glu? and Asp? can recognize guanine in single-stranded nucleic acids; Arg+ can recognize G · C base pairs from A · T base pairs in double-stranded structures.  相似文献   

12.
It is well known that sucrose stabilizes the native state of globular proteins against both chemical denaturants and temperature. A largely accepted explanation of sucrose-induced stabilization is not yet emerged. It is shown that the same theoretical approach able to rationalize the occurrence of cold denaturation, the contrasting role of GdmCl and Gdm2SO4, and the TMAO counteraction of urea denaturing activity [PCCP 12 (2010) 14245; PCCP 13 (2011) 12008; PCCP 13 (2011) 17689] works well also in the case of sucrose. The solvent-excluded volume effect plays the fundamental role because sucrose addition to water causes a marked increase in volume packing density due to the large size of sucrose molecules, that act as crowding agents.  相似文献   

13.
Abstract

A 75ps molecular dynamics simulation has been performed on a fully solvated complex of spermine with the B DNA decamer (dGdC)5 · (dGdC)5. The simulation indicates a possible mechanism by which polyamines might induce the formation of a left-handed helix, the B to Z transition. Spermine was initially located in the major groove, hydrogen bonded to the helix. During the simulation the ligand migrates deeper into the DNA, maintaining strong hydrogen bonding to the central guanine bases and destroying the Watson-Crick base pairing with their respective cytosines. Significant rotation of these and other cytosine bases was observed, in part due to interactions of the helix with the aminopropyl chains of spermine. An intermediate BII conformation might be of importance in this process.  相似文献   

14.
15.
Abstract

Using two direct methods we have studied the binding locations and site sizes of distamycin and penta-N-methylpyrrolecarboxamide on three DNA restriction fragments from pBR322 plasmid. We find that methidiumpropyl-EDTA·Fe(II) footprinting and DNA affinity cleaving methods report common binding locations and site sizes for the tri- and pentapeptides bound to heterogeneous DNA. The tripeptide distamycin binds 5-base-pair sites with a preference for poly(dA)·poly(dT) regions. The pentapeptide binds 6–7-base-pair sites with a preference for poly(dA)·poly(dT) regions. These results are consistent with distamycin binding as an isogeometric helix to the minor groove of DNA with the four carboxamide N-H's hydrogen bonding five A+T base pairs. The data supports a model where each of the carboxamide N-H's can hydrogen bond to two bases, either O(2) of thymine or N(3) of adenine, located on adjacent base pairs on opposite strands of the helix. In most (but not all) cases the tri- and pentapeptide can adopt two orientations at each A+T rich binding site.  相似文献   

16.
Abstract

Molecular modeling and molecular dynamics were performed to investigate the interaction of norfloxacin with the DNA oligonucleotide 5′-d(ATACGTAT)2. Eight quinolone-DNA binding structures were built by molecular modeling on the basis of experimental results. A 100ps molecular dynamics calculation was carried out on two groove binding models and six partially intercalating models. The resulting average structures were compared with each other and to free DNA structure as a reference. The favorable binding mode of norfloxacin to a DNA substrate was pursued by structural assess including steric hindrance, presence of hydrogen-bonding, non-bonding energies of the complex and presence of abnormal structural distortion. Although two of the intercalative models showed the highest binding energy and the lowest non-bonding interaction energy, they presented structural features which contrast with experimental results. On the other hand, one groove binding model demonstrated the most acceptable structure when the experimental observation was accounted. In this model, hydrogen bonding of the carbonyl and carboxyl group of the norfloxacin rings with the DNA bases was present, and norfloxacin binds to the amine group of the guanine base which protrudes toward the minor groove of B-DNA.  相似文献   

17.
Four 20 ns molecular dynamics simulations have been performed with two counterions, K+ or Na+, at two water contents, 15 or 20 H2O per nucleotide. A hexagonal simulation cell comprised of three identical DNA decamers [d(5′-ATGCAGTCAG) × d(5′-TGACTGCATC)] with periodic boundary condition along the DNA helix was used. The simulation setup mimics the DNA state in oriented DNA fibers or in crystals of DNA oligomers. Variation of counterion nature and water content do not alter averaged DNA structure. K+ and Na+ binding to DNA are different. K+ binds to the electronegative sites of DNA bases in the major and the minor grooves, while Na+ interacts preferentially with the phosphate groups. Increase of water causes a shift of both K+ and Na+ from the first hydration shell of O1P/O2P and of the DNA bases in the minor groove with lesser influence for the cation binding to the bases in the major groove. Mobility of both water and cations in the K–DNA systems is faster than in the Na–DNA systems: Na+ organizes and immobilizes water structure around itself and near DNA while for K+ water is less organized and more dynamic.  相似文献   

18.
Abstract

Gas-phase gradient optimization was carried out on the canonical Watson-Crick DNA base pairs using the second-order Møller-Plesset perturbation method at the 6–31G(d) and 6- 31G(d,p) basis sets. It is detected that full geometry optimization at the MP2 level leads to an intrinsically nonplanar propeller-twisted and buckled geometry of G-C and A-T base pairs; while HF and DFT methods predict perfect planar or almost planar geometry of the base pairs. Supposedly the nonplanarity of the pairs is caused by pyramidalization of the amino nitrogen atoms, which is underestimated by the HF and DFT methods. This justifies the importance of geometry optimization at the MP2 level for obtaining reliable prediction of the charge distribution, molecular dipole moments and geometrical structure of the base pairs. The Morokuma-Kitaura and the Reduced Variational Space methods of the decomposition for molecular HF interaction energies were used for investigation of the hydrogen bonding in the Watson-Crick base pairs. It is shown that the HF stability of the hydrogen-bonded DNA base pairs originates mainly from electrostatic interactions. At the same time, the calculated magnitude of the second order intramolecular correlation correction to the Coulomb energy showed that electron correlation reduces the contribution of the electrostatic term to the attractive interaction for the A-T and G-C base pairs. Polarization, charge transfer and dispersion interactions also make considerable contribution to the attraction energy of bases.  相似文献   

19.
Abstract

Simultaneous binding of two DAPI molecules in the minor groove of (dA)15.(dT)15 B-DNA helix has been simulated by molecular mechanics calculations. The energy minimised structure shows some novel features in relation to binding of DAPI molecules as well as the flexibility of the grooves of DNA helices. The minor groove of the helix expands locally considerably (to 15 Å) to accommodate the two DAPI molecules and is achieved by positive propeller twisting of base pairs at the binding site concomitant with small variations in the local nucleotide stereochemistry. The expansion also brings forth simultaneously a contraction in the width of the major groove spread over to a few phosphates. These findings demonstrate another facet of the flexible stereochemistry of DNA helices in which the local features are significantly altered without being propagated beyond a few base pairs, and with the rest of the regions retaining the normal structure. Both the DAPI molecules are engaged in specific hydrogen bonds with the bases and non specific interactions with phosphates. Stacking interactions of DAPI molecules between themselves as well as with sugar-phosphate backbone contribute to the stability of the complex. The studies provide a stereochemical support to the experimental findings that under high drug-DNA ratio DAPI could bind in the 2:1 ratio.  相似文献   

20.
Energy decomposition analyses based on the block-localized wave-function (BLW-ED) method are conducted to explore the nature of the hydrogen bonds in DNA base pairs in terms of deformation, Heitler–London, polarization, electron-transfer and dispersion-energy terms, where the Heitler–London energy term is composed of electrostatic and Pauli-exchange interactions. A modest electron-transfer effect is found in the Watson–Crick adenine–thymine (AT), guanine–cytosine (GC) and Hoogsteen adenine-thymine (H-AT) pairs, confirming the weak covalence in the hydrogen bonds. The electrostatic attraction and polarization effects account for most of the binding energies, particularly in the GC pair. Both theoretical and experimental data show that the GC pair has a binding energy (−25.4 kcal mol−1 at the MP2/6-31G** level) twice that of the AT (−12.4 kcal mol−1) and H-AT (−12.8 kcal mol−1) pairs, compared with three conventional N-H···O(N) hydrogen bonds in the GC pair and two in the AT or H-AT pair. Although the remarkably strong binding between the guanine and cytosine bases benefits from the opposite orientations of the dipole moments in these two bases assisted by the π-electron delocalization from the amine groups to the carbonyl groups, model calculations demonstrate that π-resonance has very limited influence on the covalence of the hydrogen bonds. Thus, the often adopted terminology “resonance-assisted hydrogen bonding (RHAB)” may be replaced with “resonance-assisted binding” which highlights the electrostatic rather than electron-transfer nature of the enhanced stabilization, as hydrogen bonds are usually regarded as weak covalent bonds. Figure Electron density difference (EDD) maps for the GC pair: a shows the polarization effect (isodensity 1.2×10−3 a.u.); b shows the charge transfer effect (isodensity 2×10−4 a.u.) Dedicated to Professor Paul von Ragué Schleyer on the occasion of his 75th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号