首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During osteoporosis, fat mass and obesity-associated protein (FTO) promotes the shift of bone marrow mesenchymal stem cells to adipocytes and represses osteoblast activity. However, the role and mechanisms of FTO on osteoclast formation and bone resorption remain unknown. In this study, we investigated the effect of FTO on RAW264.7 cells and bone marrow monocytes (BMMs)-derived osteoclasts in vitro and observed the influence of FTO on ovariectomized (OVX) mice model to mimic postmenopausal osteoporosis in vivo. Results found that FTO was up-regulated in BMMs from OVX mice. Double immunofluorescence assay showed co-localization of FTO with tartrate-resistant acid phosphatase (TRAP) in femurs of OVX mice. FTO overexpression enhanced TRAP-positive osteoclasts and F-actin ring formation in RAW264.7 cells upon RANKL stimulation. The expression of osteoclast differentiation-related genes, including nuclear factor of activated T cells c1 (NFATc1) and c-FOS, was upregulated in BMMs and RAW264.7 cells after FTO overexpression. FTO overexpression induced the phosphorylation and nuclear translocation of factor-kappa B (NF-κB) p65 in BMMs and RAW264.7 cells exposed to RANKL. ChIP and dual-luciferase assays revealed that FTO overexpression contributed to RANKL-induced binding of NF-κB to NFATc1 promoter. Rescue experiments suggested that FTO overexpression-mediated osteoclast differentiation was suppressed after intervention with a NF-κB inhibitor pyrrolidine dithiocarbamate. Further in vivo evidence revealed that FTO knockdown increased bone trabecula and bone mineral density, inhibited bone resorption and osteoclastogenesis in osteoporotic mice. Collectively, our research demonstrates that downregulated FTO inhibits bone resorption and osteoclastogenesis through NF-κB inactivation, which provides a novel reference for osteoporosis treatment.  相似文献   

2.
Adipokine adiponectin (APN) has been recently reported to play a role in regulating bone mineral density (BMD). To explore the mechanism by which APN affects BMD, we investigated BMD and biomechanical strength properties of the femur and vertebra in sham-operated (Sham) and ovariectomized (OVX) APN knockout (KO) mice as compared to their operated wild-type (WT) littermates. The results show that APN deficiency has no effect on BMD but induces increased ALP activity and osteoclast cell number. While OVX indeed leads to significant bone loss in both femora and vertebras of WT mice with comparable osteogenic activity and a significant increase in osteoclast cell number when compared to that of sham control. However, no differences in BMD, ALP activity and osteoclast cell number were found between Sham and OVX mice deficient for APN. Further studies using bone marrow derived mesenchymal stem cells (MSCs) demonstrate an enhanced osteogenic differentiation and extracellular matrix calcification in APN KO mice. The possible mechanism for APN deletion induced acceleration of osteogenesis could involve increased proliferation of MSCs and higher expression of Runx2 and Osterix genes. These findings indicate that APN deficiency can protect against OVX-induced osteoporosis in mice, suggesting a potential role of APN in regulating the balance of bone formation and bone resorption, especially in the development of post-menopausal osteoporosis.  相似文献   

3.
Flavonoids, a group of polyphenolic compounds abundant in plants, are known to prevent bone loss in ovariectomized (OVX) animal models. Inhibition of osteoclast differentiation and bone resorption is considered as an effective therapeutic approach in the treatment of postmenopausal bone loss. Luteolin, a plant flavonoid, has potent anti-inflammatory properties both in vivo and vitro. In this study, we found that luteolin markedly decreased the differentiation of both bone marrow mononuclear cells and Raw264.7 cells into osteoclasts. Luteolin also inhibited the bone resorptive activity of differentiated osteoclasts. We further investigated the effects of luteolin on ovariectomy-induced bone loss using micro-computed tomography, biomechanical tests and serum markers assay for bone remodeling. Oral administration of luteolin (5 and 20 mg/kg per day) to OVX mice caused significant increase in bone mineral density and bone mineral content of trabecular and cortical bones in the femur as compared to those of OVX controls, and prevented decreases of bone strength indexes induced by OVX surgery. Serum biochemical markers assays revealed that luteolin prevents OVX-induced increases in bone turnover. These data strongly suggest that luteolin has the potential for prevention of bone loss in postmenopausal osteoporosis by reducing both osteoclast differentiation and function.  相似文献   

4.
5.
Nuclear factor-κB (NF-κB) ligand (RANKL) was shown to induce osteoclast differentiation by increasing the expression of c-Fos, NFATc1 and TRAP. Salubrinal treatment to bone marrow macrophage (BMM) cells, however, significantly blocked NFATc1 expression and osteoclast differentiation by RANKL. Overexpression of NFATc1 further confirmed that NFATc1 is a key factor affected by salubrinal in osteoclast differentiation by RANKL. Unexpectedly, NFATc1 and c-Fos mRNA expressions were not affected by salubrinal, implicating that NFATc1 expression is regulated at a translational stage. In support of this, salubrinal increased the phosphorylation of a translation factor eIF2α, decreasing the global protein synthesis including NFATc1. In contrast, a phosphorylation mutant plasmid pLenti-eIF2α-S51A restored RANKL-induced NFATc1 expression and osteoclast differentiation even in the presence of salubrinal. Furthermore, knockdown of ATF4 significantly reduced salubrinal-induced osteoblast differentiation as evidenced by decreased calcium accumulation and lowered expressions of the osteoblast differentiation markers, alkaline phosphatase and RANKL in MC3T3-E1 osteoblast cells. Salubrinal treatment to co-cultured BMM and MC3T3-E1 cells also showed reduction of osteoclast differentiation. Finally, salubrinal efficiently blocked osteoporosis in mice model treated with RANKL as evidenced by elevated bone mineral density (BMD) and other osteoporosis factors. Collectively, our data indicate that salubrinal could affect the differentiation of both osteoblast and osteoclast, and be developed as an excellent anti-osteoporosis drug. In addition, modulation of ATF4 and NFATc1 expressions through eIF2α phosphorylation could be a valuable target for the treatment of osteoporosis.  相似文献   

6.
7.
OBJECTIVE: To analyze histomorphometric, densitometric and biochemical effects of melatonin on osteoporosis in ovariectomized rats. STUDY DESIGN: Wistar rats were divided into 6 groups. Group C: control; Group I: bilateral ovariectomy (OVX); Group II: OVX + vehicle; Group III: OVX + 10 mg/kg/day melatonin (MLT); Group IV: OVX + 30 mg/kg/day MLT; Group V: sham + 10 mg/kg/day MLT. Cortex, trabecula, osteoblast and osteoclast numbers were evaluated on vertebra and femur histomorphometrically. Hydroxyproline analysis was used to determine collagen content of femur and vertebrae. Bone mineral density and bone mineral content were measured. RESULTS: Trabecular thickness and trabecular area of vertebra and femur and cortical thickness of femur showed remarkable decrease after OVX, but increased after MLT treatment in the OVX+MLT groups. Following OVX, no statistically significant difference was found in number of osteoblasts or osteoclasts, trabecular number or levels of hydroxyproline after treatment with MLT. OVX caused significant decrease in bone mineral density, but treatment with MLT was unable to reverse this effect. CONCLUSION: MLT may trigger microscopic changes in bone, and time of application is critical for clinical recovery. It can be effective in helping treat postmenopausal osteoporosis. However, it is contraindicated in women who have normal-functioning ovaries.  相似文献   

8.
小GTP结合蛋白Rad (Ras-related associated with diabetes)是小GTPases的RGK亚家族成员,其在心脏之外的细胞和生理功能仍有待阐明,本研究旨在探讨Rad对小鼠骨密度、破骨细胞分化和骨量的调节作用。本研究以Rad基因敲除小鼠为动物模型,野生(WT)小鼠为对照,通过微计算机断层摄影术(microscopic computed tomography,μCT)分析雄性和雌性小鼠的股骨小梁骨体积分数和骨小梁数量,以抗酒石酸酸性磷酸酶(tartrate resistant acid phosphatase, TRAP)染色和抗酒石酸酸性磷酸酶(TRAP)+多核细胞(multinucleated cell, MNC)计数检测破骨细胞的分化和表面积,使用组织形态计量学来考察骨形成速率。结果显示,与WT野生型小鼠相比,雌性Rad基因敲除小鼠的股骨表现出显著较低的小梁骨体积分数(BV/TV)。Rad缺失使小鼠股骨的皮质骨面积明显低于WT小鼠。抗酒石酸酸性磷酸酶(TRAP)染色和TRAP+MNCs计数表明Rad的缺失显著增强了体外破骨细胞的分化。与正常野生小鼠相比,Rad缺失使小鼠的破骨细胞表面积减少。在Rad基因敲除小鼠中矿物沉积率(MAR)显著降低,矿化表面百分比(MS/BS)升高,骨形成速率/骨表面(BFR/BS)下降。本研究初步结论表明,Rad GTPase在骨代谢的调节中起着重要的作用,在小鼠中敲除Rad可导致骨密度降低,对Rad作用和调节机制的研究可能会找到骨质疏松症治疗的潜在靶点。  相似文献   

9.
10.
G protein-coupled receptor kinase interacting protein 2 (GIT2) is a signaling scaffold protein involved in the regulation of cytoskeletal structure, membrane trafficking, and G protein-coupled receptor internalization. Since dynamic cytoskeletal reorganization plays key roles both in osteoblast differentiation and in the maintenance of osteoclast polarity during bone resorption, we hypothesized that skeletal physiology would be altered in GIT2(-/-) mice. We found that adult GIT2(-/-) mice have decreased bone mineral density and bone volume in both the trabecular and cortical compartments. This osteopenia was associated with decreased numbers of mature osteoblasts, diminished osteoblastic activity, and increased marrow adiposity, suggesting a defect in osteoblast maturation. In vitro, mesenchymal stem cells derived from GIT2(-/-) mice exhibited impaired differentiation into osteoblasts and increased adipocyte differentiation, consistent with a role for GIT2 in mesenchymal stem cell fate determination. Despite elevated osteoclast inducing cytokines and osteoclast numbers, GIT2(-/-) mice also exhibit impaired bone resorption, consistent with a further role for GIT2 in regulating osteoclast function. Collectively, these findings underscore the importance of the cytoskeleton in both osteoblast and osteoclast function and demonstrate that GIT2 plays essential roles in skeletal metabolism, affecting both bone formation and bone resorption in vivo.  相似文献   

11.

Background

Osteoporosis is the most prevalent skeletal disorder, characterized by a low bone mineral density (BMD) and bone structural deterioration, leading to bone fragility fractures. Accelerated bone resorption by osteoclasts has been established as a principal mechanism in osteoporosis. However, recent experimental evidences suggest that inappropriate apoptosis of osteoblasts/osteocytes accounts for, at least in part, the imbalance in bone remodeling as occurs in osteoporosis. The aim of this study is to examine whether aspirin, which has been reported as an effective drug improving bone mineral density in human epidemiology studies, regulates the balance between bone resorption and bone formation at stem cell levels.

Methods and Findings

We found that T cell-mediated bone marrow mesenchymal stem cell (BMMSC) impairment plays a crucial role in ovariectomized-induced osteoporosis. Ex vivo mechanistic studies revealed that T cell-mediated BMMSC impairment was mainly attributed to the apoptosis of BMMSCs via the Fas/Fas ligand pathway. To explore potential of using pharmacologic stem cell based intervention as an approach for osteoporosis treatment, we selected ovariectomy (OVX)-induced ostoeporosis mouse model to examine feasibility and mechanism of aspirin-mediated therapy for osteoporosis. We found that aspirin can inhibit T cell activation and Fas ligand induced BMMSC apoptosis in vitro. Further, we revealed that aspirin increases osteogenesis of BMMSCs by aiming at telomerase activity and inhibits osteoclast activity in OVX mice, leading to ameliorating bone density.

Conclusion

Our findings have revealed a novel osteoporosis mechanism in which activated T cells induce BMMSC apoptosis via Fas/Fas ligand pathway and suggested that pharmacologic stem cell based intervention by aspirin may be a new alternative in osteoporosis treatment including activated osteoblasts and inhibited osteoclasts.  相似文献   

12.
Interest in dried plum has increased over the past decade due to its promise in restoring bone and preventing bone loss in animal models of osteoporosis. This study compared the effects of dried plum on bone to other dried fruits and further explored the potential mechanisms of action through which dried plum may exert its osteoprotective effects. Adult osteopenic ovariectomized (OVX) C57BL/6 mice were fed either a control diet or a diet supplemented with 25% (w/w) dried plum, apple, apricot, grape or mango for 8 weeks. Whole body and spine bone mineral density improved in mice consuming the dried plum, apricot and grape diets compared to the OVX control mice, but dried plum was the only fruit to have an anabolic effect on trabecular bone in the vertebra and prevent bone loss in the tibia. Restoration of biomechanical properties occurred in conjunction with the changes in trabecular bone in the spine. Compared to other dried fruits in this study, dried plum was unique in its ability to down-regulate osteoclast differentiation coincident with up-regulating osteoblast and glutathione (GPx) activity. These alterations in bone metabolism and antioxidant status compared to other dried fruits provide insight into dried plum’s unique effects on bone.  相似文献   

13.
骨质疏松以及动脉钙化均是危害极大的临床常见病变,骨保护素(OPG)可能是联系两者的分子之一.构建替换型载体pXpPNT-OPG,利用同源重组,将编码前3个蛋白质结构域的小鼠Opg基因组第二外显子序列剔除掉.通过胚胎干细胞(ES)基因打靶获得了正确重组的ES细胞克隆,ES细胞显微注射后获得嵌合体小鼠,交配传代获得杂合子和纯合子小鼠.RT-PCR和蛋白质印迹实验结果显示,纯合子小鼠没有Opg基因的表达.纯合子小鼠骨量丢失明显,骨生物力学指标明显下降,发生严重的骨质疏松,此外,还有50%以上的纯合子小鼠在早期出现动脉中层钙化.小鼠破骨功能亢进,与此同时,成熟成骨细胞数量增加,矿化功能强于野生型.Opg基因缺失小鼠骨中钙和磷大量流失,而血清中水平没有变化,这提示钙磷代谢异常不是OPG缺失导致动脉钙化的原因.对建立的Opg基因敲除小鼠模型进一步深入的研究,将有助于说明动脉钙化和骨质疏松症相互联系的分子机制,为防治骨质疏松症和动脉钙化的并发提供理论基础支持.  相似文献   

14.
Decoy receptor 3 (DcR3), a soluble receptor for FasL, LIGHT, and TL1A, induces osteoclast formation from monocyte, macrophage, and bone stromal marrow cells. However, the function of DcR3 on bone formation remains largely unknown. To understand the function of DcR3 in bone formation in vivo, transgenic mice overexpressing DcR3 were generated. Bone mineral density (BMD) and bone mineral content (BMC) of total body were significantly lower in DcR3 transgenic mice as compared with wild-type controls. The difference in BMD and BMC between DcR3 transgenic and control mice was confirmed by histomorphometric analysis, which showed a 35.7% decrease in trabecular bone volume in DcR3 transgenic mice in comparison with wild-type controls. The number of osteoclasts increased in DcR3 transgenic mice. In addition, local administration of DcR3 (30 microg/ml, 10 microl, once/day) into the metaphysis of the tibia via the implantation of a needle cannula significantly decreased the BMD, BMC, and bone volume of secondary spongiosa in tibia. Local injection of DcR3 also increased osteoclast numbers around trabecular bone in tibia. Furthermore, coadminstration of soluble tumor necrosis factor receptor inhibitor/Fc chimera (TNFRSF1A) but not osteoprotegerin inhibited the action of DcR3. In addition, in an assay of osteoclast activity on substrate plates, DcR3 significantly increased the resorption activity of mature osteoclasts. Treatment with higher concentrations of DcR3 slightly increased nodule formation and alkaline phosphatase activity of primary cultured osteoblasts. These results indicate that DcR3 may play an important role in osteoporosis or other bone diseases.  相似文献   

15.
Understanding the molecular mechanisms underlying osteoclast differentiation provides insights into bone loss and even osteoporosis. The specific mechanistic actions of cullin 4A (CUL4A) in osteoclast differentiation and resultant osteoporosis is poorly explored. We developed a mouse model of osteoporosis using bilateral ovariectomy (OVX) and examined CUL4A expression. It was noted that CUL4A expression was increased in the bone marrow of OVX mice. Overexpression of CUL4A promoted osteoclast differentiation, and knockdown of CUL4A alleviated osteoporosis symptoms of OVX mice. Bioinformatic analyses were applied to identify the downstream target genes of microRNA-340-5p (miR-340-5p), followed by interaction analysis. The bone marrow macrophages (BMMs) were isolated from femur of OVX mice, which were transfected with different plasmids to alter the expression of CUL4A, Zinc finer E-box binding homeobox 1 (ZEB1), miR-340-5p, and Toll-like receptor 4 (TLR4). ChIP assay was performed to detect enrichment of ZEB1 promoter by H3K4me3 antibody in BMMs. ZEB1 was overexpressed in the bone marrow of OVX mice. Overexpression of CUL4A mediated H3K4me3 methylation to increase ZEB1 expression, thus promoting osteoclast differentiation. Meanwhile, ZEB1 could inhibit miR-340-5p expression and upregulate HMGB1 to induce osteoclast differentiation. Overexpressed ZEB1 activated the TLR4 pathway by regulating the miR-340-5p/HMGB1 axis to induce osteoclast differentiation, thus promoting the development of osteoporosis. Overall, E3 ubiquitin ligase CUL4A can upregulate ZEB1 to repress miR-340-5p expression, leading to HMGB1 upregulation and the TLR4 pathway activation, which promotes osteoclast differentiation and the development of osteoporosis.  相似文献   

16.
There is now increasing evidence which suggests a key role for osteoblast apoptosis in the pathogenesis of postmenopausal osteoporosis. Here, we evaluated the role and mechanism of proteasome 26S subunit, ATPase (PSMC) 6, a protein that is highly expressed in bone. Gene expression pattern had been extracted based on database of Gene Expression Omnibus (GEO). GEO2R was employed for analyses, while the DAVID database was adopted to further analyze the gene ontology (GO) as well as Kyoto Encyclopedia of Genomes pathway (KEGG) enrichment. Then, the Search Tool Retrieval of Interacting Genes (STRING) was utilized to carry out interaction regulatory network for the top 200 differentially expressed genes (DEGs). A key gene, called PSMC6, was identified by Cytoscape 3.6.0. The OVX osteoporosis model was established in female C57BL/6 mice by full bilateral ovariectomy. According to our findings, PSMC6 gene knockout would elevate bone mineral density (BMD) and the phosphorylation level of PI3K protein and increased the protein level of cleaved caspase-3/-9 in OVX osteoporosis mice. Further, MTT, bromodeoxyuridine, and flow cytometry assays revealed that PSMC6 inhibition promoted the progression of cell cycle and cell proliferation, whereas, PSMC6 overexpression promoted the apoptosis and inhibited cell cycle progression and cell proliferation in vitro. Besides, we found that PI3K activation significantly decreased PSMC6-induced osteoblast apoptosis and promoted cell proliferation through regulating the protein levels of p53, cyclinD1, and cleaved caspase-3/9. In conclusion, PSMC6 aggravated the degree of OVX-induced osteoporosis by inhibiting the PI3K/AKT signal transduction pathway, thereby promoting the apoptosis of osteoblasts.  相似文献   

17.
Bio-convertible artificial bone with slow release of anti-osteoporosis drug is useful to treat osteoporosis. Apatite cement containing 6% simvastatin (APD) had lower crystallinity than natural bone. In-vitro drug release tests in simulated body fluid (pH 7.8) and acetate buffer (pH 4.5) were performed at 37.0 C as physical models of osteoblast and osteoclast conditions (SOB and SOC). The device had lower drug release rate under SOB, but significantly higher rates under SOC. The simvastatin release rate changed depending on dissolution media, it repeated twice, and the rate under SOC was 15 times higher than under SOB. The device showed dissolution medium responsive drug release. After implantation of the APD in osteoporosis rats, the bone mineral density was evaluated by the x-ray computed tomography. The result indicated that the bone mineral density of APD implanted rat was significantly higher than that of control diseased. The result indicated that the device was therapeutically useful to bone regeneration.  相似文献   

18.
The role of prostaglandin E2 (PGE2) in the regulation of bone remodeling is well established. There is increasing evidence that various long-chain polyunsaturated fatty acids (LCPUFAs), as well as nonprostanoid LCPUFA metabolites, also have critical roles in regulating bone metabolism and may have therapeutic potential in the management of postmenopausal osteoporosis. Although only the 18-carbon precursors for the n-3 and n-6 LCPUFAs are deemed "dietary essential," the ability of the body to convert these precursor fatty acids into the more highly unsaturated 20- and 22-carbon LCPUFAs decreases with aging, menopause, and various lifestyle factors (e.g., smoking). Increasing dietary LCPUFA intake increases tissue and blood LCPUFA concentrations, as well as the concentrations of their metabolites. Modification of dietary LCPUFA content, particularly increasing the intake of n-3 LCPUFAs, has been shown to minimize the decline in bone mass caused by menopause in women and ovariectomy in animal models. This review summarizes findings from both in vivo and in vitro studies and outlines the effects of LCPUFAs and their metabolites on calcium balance, osteoblastogenesis, osteoclastogenesis, and osteoblast and osteoclast function.  相似文献   

19.
The aim of this study is to evaluate the effect of transient receptor potential vanilloid 4 (TRPV4) on osteoclast differentiation and osteoporosis, and to investigate the underlying mechanism. The results showed that TRPV4 expression and intracellular Ca2+ concentration were significantly upregulated in macrophage colony-stimulating factor (M-CSF)-stimulated and receptor activator of nuclear factor κΒ ligand (RANKL)-stimulated RAW264.7 cells. Furthermore, TRPV4 overexpression further increased the M-CSF- and RANKL-induced number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and expression of osteoclastogenesis-related genes (TRAP, c-Fos, and nuclear factor of activated T cells [NFATc1]), activated the Ca 2+–calcineurin–NFATc1 signaling and increased autophagy-related proteins (light chain [LC] 3II and Beclin-1) during osteoclast differentiation. In contrast, TRPV4 knockdown exerted the opposite effects. Mechanically, inhibition of Ca 2+–calcineurin–NFATc1 signaling by FK506 or 11R-VIVIT abrogated the TRPV4 overexpression-induced osteoclast differentiation and autophagy induction. Moreover, suppression of autophagy by 3-methyladenine attenuated the TRPV4-induced osteoclast differentiation. In addition, short hairpin RNA TRPV4-lentivirus administration significantly diminished the increased levels of several osteoclastogenesis-related genes (RANKL, TRAP, and tumor necrosis factor-α), alleviated the disturbed microarchitecture of lumbar vertebrae, restored the decreased bone mineral density, ratio of bone volume to total tissue volume, trabecular thickness, and trabecular number, and diminished the increased trabecular separation, in ovariectomy (OVX)-induced osteoporosis mice. Consistent with the in vitro data, TRPV4 knockdown significantly decreased the induced number of TRAP-positive osteoclasts, the increased LC3 and NFATc1 expression in the lumbar vertebrae of OVX mice. In conclusion, TRPV4 knockdown suppresses osteoclast differentiation and osteoporosis by inhibiting autophagy through Ca 2+–calcineurin–NFATc1 pathway.  相似文献   

20.
PRIP (phospholipase C-related, but catalytically inactive protein) is a novel protein isolated in this laboratory. PRIP-deficient mice showed increased serum gonadotropins, but decreased gonadal steroid hormones. This imbalance was similar to that for the cause of bone disease, such as osteoporosis. In the present study, therefore, we analyzed mutant mice with special reference to the bone property. We first performed three-dimensional analysis of the femur of female mice. The bone mineral density and trabecular bone volume were higher in mutant mice. We further performed histomorphometrical assay of bone formation parameters: bone formation rate, mineral apposition rate, osteoid thickness, and osteoblast number were up-regulated in the mutant, indicating that increased bone mass is caused by the enhancement of bone formation ability. We then cultured primary cells isolated from calvaria prepared from both genotypes. In mutant mice, osteoblast differentiation, as assessed by alkaline phosphatase activity and the expression of osteoblast differentiation marker genes, was enhanced. Moreover, we analyzed the phosphorylation of Smad1/5/8 in response to bone morphogenetic protein, with longer phosphorylation in the mutant. These results indicate that PRIP is implicated in the negative regulation of bone formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号