首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Son YD  Jeong YT  Park SY  Kim JH 《Glycobiology》2011,21(8):1019-1028
Therapeutic glycoproteins with exposed galactose (Gal) residues are cleared rapidly from the bloodstream by asialoglycoprotein receptors in hepatocytes. Various approaches have been used to increase the content of sialic acid, which occupies terminal sites of N- or O-linked glycans and thereby increases the half-life of therapeutic glycoproteins. We enhanced sialylation of human erythropoietin (EPO) by genetic engineering of the sialylation pathway in Chinese hamster ovary (CHO) cells. The enzyme GNE (uridine diphosphate-N-acetyl glucosamine 2-epimerase)/MNK (N-acetyl mannosamine kinase), which plays a key role in the initial two steps of sialic acid biosynthesis, is regulated by cytidine monophosphate (CMP)-sialic acid through a feedback mechanism. Since sialuria patient cells fail in regulating sialic acid biosynthesis by feedback mechanism, various sialuria-like mutated rat GNEs were established and subjected to in vitro activity assay. GNE/MNK-R263L-R266Q mutant showed 93.6% relative activity compared with wild type and did not display feedback inhibition. Genes for sialuria-mutated rat GNE/MNK, Chinese hamster CMP-sialic acid transporter and human α2,3-sialyltransferase (α2,3-ST) were transfected simultaneously into recombinant human (rh) EPO-producing CHO cells. CMP-sialic acid concentration of engineered cells was significantly (>10-fold) increased by sialuria-mutated GNE/MNK (R263L-R266Q) expression. The sialic acid content of rhEPO produced from engineered cells was 43% higher than that of control cells. Ratio of tetra-sialylated glycan of rhEPO produced from engineered cells was increased ~32%, but ratios of asialo- and mono-sialylated glycans were decreased ~50%, compared with control. These findings indicate that sialuria-mutated rat GNE/MNK effectively increases the intracellular CMP-sialic acid level. The newly constructed host CHO cell lines produced more highly sialylated therapeutic glycoproteins through overexpression of sialuria-mutated GNE/MNK, CMP-SAT and α2,3-ST.  相似文献   

2.
The human Golgi enzyme CMP-NeuAc:Gal(β1–4)GlcNAc-R α2,6-sialyltransferase (ST6N) was stably coexpressed with human erythropoietin (EPO) from a BHK-21A cell line. The cell line was characterized with respect to the expression and in vitro activity of the ST6N and the endogenous α2,3-sialyltransferase. Detailed structural analysis of the N-linked carbohydrates of the rhuEPO expressed from the new cell line was performed by HPAE-PAD-mapping, MALDI/TOF-MS and methylation analysis after purification of the recombinant protein by immunoaffinity chromatography. This is the first report describing that the human α2,6-sialyltransferase is capable of sialylating, apart from Gal(β1–4)GlcNAc-R, also GalNAc(β1–4)GlcNAc-R motifs in vivo, which is not the case for the endogenous BHK-cell α2,3-sialyltransferase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Chinese hamster ovary (CHO) cells are widely employed to produce glycosylated recombinant proteins. Our group as well as others have demonstrated that the sialylation defect of CHO cells can be corrected by transfecting the alpha2,6-sialyltransferase (alpha2,6-ST) cDNA. Glycoproteins produced by such CHO cells display both alpha2,6- and alpha2,3-linked terminal sialic acid residues, similar to human glycoproteins. Here, we have established a CHO cell line stably expressing alpha2,6-ST, providing a universal host for further transfections of human genes. Several relevant parameters of the universal host cell line were studied, demonstrating that the alpha2,6-ST transgene was stably integrated into the CHO cell genome, that transgene expression was stable in the absence of selective pressure, that the recombinant sialyltransferase was correctly localized in the Golgi and, finally, that the bioreactor growth parameters of the universal host were comparable to those of the parental cell line. A second step consisted in the stable transfection into the universal host of cDNAs for human glycoproteins of therapeutic interest, i.e. interferon-gamma and the tissue inhibitor of metalloproteinases-1. Interferon-gamma purified from the universal host carried 40.4% alpha2,6- and 59.6% alpha2,3-sialic acid residues and showed improved pharmacokinetics in clearance studies when compared to interferon-gamma produced by normal CHO cells.  相似文献   

4.
Chinese hamster ovary (CHO) cells are widely employed to produce glycosylated recombinant proteins. Our group as well as others have demonstrated that the sialylation defect of CHO cells can be corrected by transfecting the α2,6-sialyltransferase (α2,6-ST) cDNA. Glycoproteins produced by such CHO cells display both α2,6- and α2,3-linked terminal sialic acid residues, similar to human glycoproteins. Here, we have established a CHO cell line stably expressing α2,6-ST, providing a universal host for further transfections of human genes. Several relevant parameters of the universal host cell line were studied, demonstrating that the α2,6-ST transgene was stably integrated into the CHO cell genome, that transgene expression was stable in the absence of selective pressure, that the recombinant sialyltransferase was correctly localized in the Golgi and, finally, that the bioreactor growth parameters of the universal host were comparable to those of the parental cell line. A second step consisted in the stable transfection into the universal host of cDNAs for human glycoproteins of therapeutic interest, i.e. interferon-γ and the tissue inhibitor of metalloproteinases-1. Interferon-γ purified from the universal host carried 40.4% α2,6- and 59.6% α2,3-sialic acid residues and showed improved pharmacokinetics in clearance studies when compared to interferon-γ produced by normal CHO cells.  相似文献   

5.
We analyzed two transgenic mouse lines that secrete rhEPO in their milk to assess the dynamic control of N-linked oligosaccharides. Since pharmaceutically available epoetin α and β are produced in CHO cells, we compared transgenic mammary gland-derived rhEPO to its CHO cell-derived counterpart. The major glycosyltransferases that determine the N-oligosaccharides patterns of rhEPO include N-acetylglycosaminyltransferase (GnT) and α1,3/4 fucosyltransferase (Fuc-TIV), GnT-III, -V and Fuc-TIV expression in the mouse mammary gland is significantly higher than that in Chinese hamster ovary (CHO)-derived cells, where the protein is not detectable. The data suggest that N-linked sugar chain patterns of recombinant glycoproteins, produced by the mammary gland differ, since GnT-III alters the sugar pattern extensively. In our experiments, rhEPO produced by the transgenic mice contains more tetra-acidic oligosaccharide structures than epoetin α derived from CHO cells, a rhEPO that is widely used therapeutically. Accordingly, we examined milk-derived rhEPO activity, both in vitro and in vivo. The rhEPO protein purified from the milk of mammary glands upregulates the EPO receptor-mediated expression of the STAT5 gene in MCF-7 cells in a dose-dependent manner, similar to the effects of epoetin α. Furthermore, direct injection of rhEPO into the mouse tail vein leads to an increase in the levels of blood components, such as red blood cells and platelets. In light of these findings, we suggest that the mammary glands of transgenic animals provide a sufficient environment to generate rhEPO with post-translational modifications for biopharmaceutical use. These authors are equal contributors to this work.  相似文献   

6.
The effect of ammonium on the glycosylation pattern of the recombinant immunoadhesin tumor necrosis factor-IgG (TNFR-IgG) produced by Chinese hamster ovary cells is elucidated in this study. TNFR-IgG is a chimeric IgG fusion protein bearing one N-linked glycosylation site in the Fc region and three complex-type N-glycans in the TNF-receptor portion of each monomer. The ammonium concentration of batch suspension cultures was adjusted with glutamine and/or NH(4)Cl. The amount of galactose (Gal) and N-acetylneuraminic acid (NANA) residues on TNFR-IgG correlated in a dose-dependent manner with the ammonium concentration under which the N-linked oligosaccharides were synthesized. As ammonium increased from 1 to 15 mM, a concomitant decrease of up to 40% was observed in terminal galactosylation and sialylation of the molecule. Cell culture supernatants contained measurable beta-galactosidase and sialidase activity, which increased throughout the culture. The beta-galactosidase, but not the sialidase, level was proportional to the ammonium concentration. No loss of N-glycans was observed in incubation studies using beta-galactosidase and sialidase containing cell culture supernatants, suggesting that the ammonium effect was biosynthetic and not degradative. Several biosynthetic mechanisms were investigated. Ammonium (a weak base) is known to affect the pH of acidic intracellular compartments (e.g., trans-Golgi) as well as intracellular nucleotide sugar pools (increases UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine). Ammonium might also affect the expression rates of beta1, 4-galactosyltransferase (beta1,4-GT) and alpha2,3-sialyltransferase (alpha2,3-ST). To separate these mechanisms, experiments were designed using chloroquine (changes intracellular pH) and glucosamine (increases UDP-GNAc pool [sum of UDP-GlcNAc and UDP-GalNAc]). The ammonium effect on TNFR-IgG oligosaccharide structures could be mimicked only by chloroquine, another weak base. No differences in N-glycosylation were found in the product synthesized in the presence of glucosamine. No differences in beta1, 4-galactosyltransferase (beta1,4-GT) and alpha2,3-sialyltransferase (alpha2,3-ST) messenger RNA (mRNA) and enzyme levels were observed in cells cultivated in the presence or absence of 13 mM NH(4)Cl. pH titration of endogenous CHO alpha2,3-ST and beta-1,4-GT revealed a sharp optimum at pH 6.5, the reported trans-Golgi pH. Thus, at pH 7.0 to 7.2, a likely trans-Golgi pH range in the presence of 10 to 15 mM ammonium, activities for both enzymes are reduced to 50% to 60%. Consequently, ammonium seems to alter the carbohydrate biosynthesis of TNFR-IgG by a pH-mediated effect on glycosyltransferase activity.  相似文献   

7.
The glycosylation pattern of Erythropoietin (EPO), produced by recombinant CHO cells, was studied using the simple and rapid technique of ‘Lectin-blotting’. In this experiment we used three different kinds of lectins, MAA (Maackia amurensis agglutinine), RCA (Ricinus communis agglutinine), and DSA (Datura stramonium agglutinine), which bind to the terminal sialic acid, galactose, and the N-acetyllactosamine chain respectively. The lectin-blotting technique was used to analyze the carbohydrate structure of EPO produced in the presence of two physiologically active chemical compounds, ammonium and chloroquine. The effect of the ammonium ion on the glycosylation of EPO was studied because it accumulated in the medium mainly as a by-product of glutamine metabolism. Ammonium chloride significantly inhibited the sialylation of the terminal galactose residue at concentrations of 8 mM or more. Chloroquine, a potent inhibitor of glycosylation, inhibited terminal sialylation at concentrations of 100 and 200 μM, and at a concentration of 300 μM also inhibited N-acetyllactosamine chain synthesis.  相似文献   

8.
A non-human like glycosylation pattern in human recombinant glycoproteins expressed by animal cells may compromise their use as therapeutic drugs. In order to correct the CHO glycosylation machinery, a CHO cell line producing recombinant human interferon- (IFN) was transformed to replace the endogenous pseudogene with a functional copy of the enzyme 2,6-sialyltransferase (2,6-ST). Both the parental and the modified CHO cell line were propagated in serum-free batch culture with or without 1 mM sodium butyrate. Although Na-butyrate inhibited cell growth, IFN concentration was increased twofold. The IFN sialylation status was determined using linkage specific sialidases and HPLC. Under non- induced conditions, IFN expressed by 2,6-engineered cells contained 68% of the total sialic acids in the 2,6- conformation and the overall molar ratio of sialic acids to IFN was 2.3. Sodium butyrate addition increased twofold the molar ratio of total sialic acids to IFN and 82% of total sialic acids on IFN were in the 2,6-conformation. In contrast, no effect of the sodium butyrate was noticed on the sialylation of the IFN secreted by the 2,6-ST deficient parental cell line. This study deals for the first time with the effect of Na-butyrate on CHO cells engineered to produce human like sialylation.  相似文献   

9.
Zeng X  Sun Y  Uzawa H 《Biotechnology letters》2005,27(19):1461-1465
4-Methylumbelliferyl N-acetyllactosaminide and 4-methylumbelliferyl sialyl N-acetyllactosaminides, which are used for the assay of sialytransferase, neuraminidase and fucosyltransferase, were synthesized, respectively, by the β-D-galactosidase from Bacillus circulans and by a recombinant rat α2,3-(N)-sialyltransferase or rat liver α2,6-(N)-sialyltransferase with CMP-N-acetylneuraminic acid as donor.  相似文献   

10.
Increased sialylation of cell surface glycoconjugates is among the key molecular changes associated with malignant transformation and cancer progression. We investigated significance of linkage-specific sialylation changes in oral carcinogenesis. Tissue and serum levels of total sialic acid (TSA), linkage-specific sialyltransferases (ST) and sialoproteins were analyzed from patients with oral precancerous conditions (OPC) and oral cancer as well as the post-treatment follow-up blood samples of oral cancer patients. TSA levels were measured using a spectrophotometric method. The linkage-specific lectins, Sambusus nigra (SNA) and Maackia amurensis (MAM) detects α2-6- and α2-3-linked sialic acid, respectively, were used to analyze ST activity and sialoproteins. Malignant tissues showed significantly higher levels of TSA, reactivity of SNA and MAM, and α2,3-ST activity compared to the adjacent normal tissues. α2,6-ST was also higher in malignant tissues. Similarly, the marker levels were higher in precancerous tissues than their adjacent normal tissues. Serum levels of TSA, TSA/ total proteins, α2-6-sialoproteins and α2,6-ST were markedly increased in untreated oral cancer patients compared to the controls and OPC as well as responder (CR) patients. Serum levels of the markers were higher or comparable between untreated oral cancer patients and non-responders (NR). Serum levels of α2-3-sialylation were elevated in non-responders compared with the responders. Further, the observed sialylation changes in tissue and serum were found to be associated with various clinicopathological features and disease progression. Thus, the data suggest potential utility of sialylation markers in early detection, prognostication and treatment monitoring of oral cancer.  相似文献   

11.
In order to investigate the influence of inflammation on the peripheral glycosylation of airway mucins, a human respiratory glandular cell line (MM-39) was treated by TNF. The expression and the activity of sialyl- and fucosyl-transferases, involved in the biosynthesis of peripheral carbohydrate determinants like sialyl-Lewis x, were investigated by RT-PCR and by HPAEC respectively. The mRNA steady-state level of sialyl- (ST3Gal III) and of fucosyl- (FUT3) transferases was moderately up-regulated by TNF; a 52% increase of 2,3-sialyltransferase activity was also observed in TNF-stimulated MM-39 cells. After metabolic radio-labelling with [3H]glucosamine and [3H]fucose, the mucins released inthe culture supernatant were purified by Sepharose CL-4B, density-gradient centrifugation and treatment with glycosaminoglycans-degrading enzymes. The mucins, released in the culture supernatant from control MM-39 cells, were constituted by two populations of molecules having the same 1.39–1.44 mg/ml density but carrying either high or low amounts of sialic acid residues at their periphery. TNF was able to increase the sialylation of the weakly sialylated mucins. This effect and the enhancement of the 2,3-sialyltransferase activity by TNF argue in favour of a regulation of the mucin sialylation by this pro-inflammatory cytokine. Despite the moderate overexpression of FUT3, no fucosylation of mucins produced by MM-39 cells was induced by TNF. In conclusion, the influence of TNF on the sialylation of mucins could explain why the mucins from infected patients suffering either from cystic fibrosis or from chronic bronchitis are more sialylated.  相似文献   

12.
A recombinant IgG3 antibody with Phe-243 replaced by Ala (FA243) was expressed in a CHO-K1 parental cell line. The resulting IgG-Fc-linked carbohydrate was significantly alpha2,3-sialylated (53% of glycans), as indicated by normal- and reverse-phase HPLC analyses. Following transfection of a rat alpha2,6-sialyltransferase gene into this parental cell line, IgG-Fc-linked glycans were sialylated (60% of glycans) such that the ratio of alpha2,6- to alpha2,3-linked sialic acid was 0.9:1.0. By comparison, the wild-type IgG3 (F243) is minimally sialylated (2-3% alpha2,3-linked), thus suggesting that sialylation is controlled primarily by the protein structure local to the carbohydrate and that the two sialyltransferases compete to sialylate the nascent oligosaccharide. The additional alpha2,6-sialylation affected the function of the recombinant antibody. FA243 IgG3 having both alpha2,6 and alpha2,3-sialylation restored recognition to wild-type IgG3 levels for human FcgammaRI, FcgammaRII, and target cell lysis by complement. We discuss how sialylation linkage could modulate IgG function.  相似文献   

13.
为了对工程中国仓鼠卵巢(CHO)细胞所产人源重组促红素(rhEPO)的N-糖基化特点进行考察,静置培养工程细胞后,通过等电聚焦和凝集素共沉淀对培养上清中的rhEPO进行分析,并对无血清培养上清中乳酸脱氢酶(LDH)和唾液酸酶活性进行检测,发现这株CHO细胞可以表达唾液酸含量较高的rhEPO蛋白。但是随着培养时间的延长,细胞的存活率逐渐降低,死亡的细胞将胞内的唾液酸酶释放到胞外,唾液酸酶的降解作用会造成N-糖链分枝末端的唾液酸占有率降低,导致rhEPO蛋白糖基化形态的变化。所使用的方法及得到的结果为进一步对工业过程进行分析提供了参考。  相似文献   

14.
Sialidases, or neuraminidases (EC 3.2.1.18), belong to a class of glycosyl hydrolases that release terminal N-acylneuraminate residues from the glycans of glycoproteins, glycolipids, and polysaccharides. In bacteria, sialidases can be used to scavenge sialic acids as a nutrient from various sialylated substrates or to recognize sialic acids exposed on the surface of the host cell. Despite the fact that bacterial sialidases share many structural features, their biochemical properties, especially their linkage and substrate specificities, vary widely. Bacterial sialidases can catalyze the hydrolysis of terminal sialic acids linked by the α(2,3)-, α(2,6)-, or α(2,8)-linkage to a diverse range of substrates. In addition, some of these enzymes can catalyze the transfer of sialic acids from sialoglycans to asialoglycoconjugates via a transglycosylation reaction mechanism. Thus, some bacterial sialidases have been applied to synthesize complex sialyloligosaccharides through chemoenzymatic approaches and to analyze the glycan structure. In this review article, the biochemical features of bacterial sialidases and their potential applications in regioselective hydrolysis reactions as well as sialylation by transglycosylation for the synthesis of sialylated complex glycans are discussed.  相似文献   

15.
Improvement of glycosylation is one of the most important topics in the industrial production of therapeutic antibodies. We have focused on terminal sialylation with alpha-2,6 linkage, which is crucial for anti-inflammatory activity. In the present study, we have successfully cloned cDNA of beta-galactosyl alpha-2,6 sialyltransferase (ST6Gal I) derived from Chinese hamster ovary (CHO) cells regardless of reports that stated this was not endogenously expressed in CHO cells. After expressing cloned ST6Gal I in Escherichia coli, the transferase activity was confirmed by HPLC and lectin binding assay. Then, we applied ST6Gal I to alpha-2,6 sialylation of the recombinant antibody; the ST6Gal I expression vector was transfected into the CHO cell line producing a bispecific antibody. The N-glycosylation pattern of the antibody was estimated by HPLC and sialidase digestion. About 70% of the total N-linked oligosaccharide was alpha-2,6 sialylated in the transfected cell line whereas no sialylation was observed in the non-transfected cell line. The improvement of sialylation would be of practical importance for the industrial production of therapeutic antibodies.  相似文献   

16.
Natural human interferon- (hIFN-) contains mainly biantennary complex-type sugar chains. We previously remodeled the branch structures of N-glycans on hIFN- in Chinese hamster ovary (CHO) cells by overexpressing UDP-N-acetylglucosamine: 1,6-D-mannoside 1,6-N-acetylglucosaminyltransferase (GnT-V). Normal CHO cells primarily produced hIFN- having biantennary sugar chains, whereas a CHO clone, designated IM4/Vh, transfected with GnT-V, primarily produced hIFN- having GlcNAc1-6 branched triantennary sugar chains when sialylation was incomplete and an increase in poly-N-acetyllactosamine (Gal1-4GlcNAc1-3)n was observed. In the present study, we introduced mouse Gal1-3/4GlcNAc-R 2,3-sialyltransferase (ST3Gal IV) and/or rat Gal1-4GlcNAc-R 2,6-sialyltransferase (ST6Gal I) cDNAs into the IM4/Vh cells to increase the extent of sialylation and to examine the effect of sialyltransferase (ST) type on the linkage of sialic acid. Furthermore, we speculated that sialylation extent might affect the level of poly-N-acetyllactosamine. We isolated four clones expressing different levels of 2,3-ST and/or 2,6-ST. The extent of sialylation of hIFN- from the IM4/Vh clone was 61.2%, which increased to about 80% in every ST transfectant. The increase occurred regardless of the type of overexpressed ST, and the proportion of 2,3- and 2,6-sialic acid corresponded to the activity ratio of 2,3-ST to 2,6-ST. Furthermore, the proportion of N-glycans containing poly-N-acetyllactosamine was significantly reduced (less than 10%) in the ST transfectants compared with the parental IM4/Vh clone (22.9%). These results indicated that genetic engineering of STs is highly effective for regulating the terminal structures of sugar chains on recombinant proteins in CHO cells.  相似文献   

17.
《MABS-AUSTIN》2013,5(8):1381-1390
ABSTRACT

Human IgG antibodies containing terminal alpha 2,6-linked sialic acid on their Fc N-glycans have been shown to reduce antibody-dependent cell-mediated cytotoxicity and possess anti-inflammatory properties. Although terminal sialylation on complex N-glycans can happen via either an alpha 2,3-linkage or an alpha 2,6-linkage, sialic acids on human serum IgG Fc are almost exclusively alpha 2,6-linked. Recombinant IgGs expressed in Chinese hamster ovary (CHO) cells, however, have sialic acids through alpha 2,3-linkages because of the lack of the alpha 2,6-sialyltransferase gene. The impact of different sialylation linkages to the structure of IgG has not been determined. In this work, we investigated the impact of different types of sialylation to the conformational stability of IgG through hydrogen/deuterium exchange (HDX) and limited proteolysis experiments. When human-derived and CHO-expressed IgG1 were analyzed by HDX, sialic acid-containing glycans were found to destabilize the CH2 domain in CHO-expressed IgG, but not human-derived IgG. When structural isomers of sialylated glycans were chromatographically resolved and identified in the limited proteolysis experiment, we found that only alpha 2,3-linked sialic acid on the 6-arm (the major sialylated glycans in CHO-expressed IgG1) destabilizes the CH2 domain, presumably because of the steric effect that decreases the glycan-CH2 domain interaction. The alpha 2,6-linked sialic acid on the 3-arm (the major sialylated glycan in human-derived IgG), and the alpha 2,3-linked sialic acid on the 3-arm, do not have this destabilizing effect.  相似文献   

18.
The expressions of terminal sugars in synovial and plasma fibronectins were studied in relation to rheumatoid arthritis (RA) progression defined according to the early, established and late radiological changes in the patients’ hands. The relative amounts of sialic acid and fucose were analyzed by lectin-ELISA using appropriate sialic acid-linked α2-3 (Maackia amurensis) and α2-6 (Sambucus nigra) lectins as well as fucose-linked α1-6 (Aleuria aurantia), α1-2 (Ulex europaeus), and α1-3 (Tetragonolobus purpureus). In the early RA group, the synovial fibronectin reactivities were the lowest with the all lectins used. In the established and late groups, relative sialylation and fucosylation significantly increased. However, sialylation negligibly decreased, whereas fucosylation remained at nearly the same level in the late group. Moreover, the expression of α1-6-linked fucose was found to be related to disease activity. In contrast, plasma fibronectin reactivity with lectins showed different dynamic alterations. In the early RA group, the reactivity of fibronectin with the lectins used was similar to that of healthy individuals, whereas it increased significantly in the established RA group compared with the early and normal plasma groups. In the late RA group it decreased to a level similar to that of the normal group. The lower expressions of terminal sugars in synovial fibronectin were mainly associated with the early degenerative processes of RA. In conclusion, such alterations may be applicable as a stage-specific marker for diagnosis and therapy of RA patients. The higher expression of terminal sugars in fibronectin could be associated with repair and adaptation processes in longstanding disease.  相似文献   

19.
N‐Glycans of human proteins possess both α2,6‐ and α2,3‐linked terminal sialic acid (SA). Recombinant glycoproteins produced in Chinese hamster overy (CHO) only have α2,3‐linkage due to the absence of α2,6‐sialyltransferase (St6gal1) expression. The Chinese hamster ST6GAL1 was successfully overexpressed using a plasmid expression vector in three recombinant immunoglobulin G (IgG)‐producing CHO cell lines. The stably transfected cell lines were enriched for ST6GAL1 overexpression using FITC‐Sambucus nigra (SNA) lectin that preferentially binds α2,6‐linked SA. The presence of α2,6‐linked SA was confirmed using a novel LTQ Linear Ion Trap Mass Spectrometry (LTQ MS) method including MSn fragmentation in the enriched ST6GAL1 Clone 27. Furthermore, the total SA (mol/mol) in IgG produced by the enriched ST6GAL1 Clone 27 increased by 2‐fold compared to the control. For host cell engineering, the CHOZN® GS host cell line was transfected and enriched for ST6GAL1 overexpression. Single‐cell clones were derived from the enriched population and selected based on FITC‐SNA staining and St6gal1 expression. Two clones (“ST6GAL1 OE Clone 31 and 32”) were confirmed for the presence of α2,6‐linked SA in total host cell protein extracts. ST6GAL1 OE Clone 32 was subsequently used to express SAFC human IgG1. The recombinant IgG expressed in this host cell line was confirmed to have α2,6‐linked SA and increased total SA content. In conclusion, overexpression of St6gal1 is sufficient to produce recombinant proteins with increased sialylation and more human‐like glycoprofiles without combinatorial engineering of other sialylation pathway genes. This work represents our ongoing effort of glycoengineering in CHO host cell lines for the development of “bio‐better” protein therapeutics and cell culture vaccine production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:334–346, 2015  相似文献   

20.
The CHO cell line has achieved considerable commercial importance as a vehicle for the production of human therapeutic proteins, but is known to lack a functional copy of the gene coding for 2,6-sialyltransferase (EC 2.4.99.1). The cDNA for rat 2,6-ST was expressed in a recombinant CHO cell line making interferon-, using a novel in vitro amplification vector. The enzyme was expressed efficiently, and resulted in up to 60% of the total sialic acids on interferon- being linked in the 2,6-conformation. This sialic acid linkage distribution was more akin to that seen in natural human glycoproteins. In the most successful cell clones, expression of 2,6-sialyltransferase improved the overall level of sialylation by up to 56%, and had no adverse effects on cell growth, IFN- productivity or other aspects of IFN- glycosylation. These experiments demonstrate how the glycosylation machinery of rodent cells can be genetically manipulated to replicate human tissues.Abbreviations AT-III antithrombin-III - CHO Chinese hamster ovary - dhfr dihydrofolate reductase - EPO erythropoietin - IFN- human interferon- - NEO neomycin - NeuAc N-acetylneuraminic acid - NeuGc N-glycolylneuraminic acid - ST sialyltransferase - tPA tissue plasminogen activator  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号