首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the importance of water chemistry and water regime for vascular plant and bryophyte species distribution in Western Carpathian mires dominated bySphagnum. Seventy-seven small circle plots distributed across a wide geographical area, a wide range of mineral richness and all possible microtopographical features were sampled in terms of species composition, physical-chemical water properties and water regime during one growing season. Both water chemistry and water regime were found to be important factors for vegetation composition. Bryophytes reflected only one clear gradient, connected to base-richness (pH, conductivity) and maximal water-level, whereas three different environmental gradients determined the occurrence of vascular plants: water-level amplitude, base-richness and an indistinct gradient presumably connected to peat layer thickness. When the entire data set was subjected to DCA ordination, the first resulting axis was governed by the bryophyte subset, whereas the second one was governed by the vascular plant subset. The species density of vascular plants was positively correlated with pH and conductivity. On the contrary, bryophyte species density showed no relationship to environmental factors. We further compared the pH values measured in groundwater and in water squeezed from bryophytes from the same plot; these plots were distributed along the base-richness gradient. Only in the acidic mires did the use of squeezed-water chemistry in the analyses give results similar to the use of groundwater pH. Further, we found thatSphagnum species with a similar response to the base-richness gradient had differentiated niches with respect to the water level gradient and vice versa.Sphagnum contortum andS. warnstorfii exhibiting the same demands for groundwater pH were segregated along the gradient of maximum water level. An analogous pattern was detected for acidophilous speciesSphagnum magellanicum andS. papillosum.  相似文献   

2.
Question: Why is bryophyte succession in eutrophicated fens faster than in natural fens? Location: Mineral‐rich fens in The Netherlands and NW Europe. Methods: Literature review on the ecology of four bryophyte species in various successional types as observed in Dutch fens. Results: Bryophyte succession in eutrophicated fens from the brown moss Calliergonella cuspidata to Sphagnum squarrosum is much faster than in natural fens with species shifts from Scorpidium scorpioides to Sphagnum subnitens. Under P‐poor conditions, the brown moss stage is stabilized as long as mineral‐rich water is supplied. This is because S. scorpioides is tolerant of rainwater, is a strong competitor and can counteract acidification to some extent while S. subnitens is intolerant to groundwater and has low growth rates and low acidification capacity. In contrast, the Sphagnum stage is stable after rapid succession from rich‐fen mosses under P‐rich conditions. Calliergonella cuspidata has suboptimal growth in rainwater, possibly due to ammonium toxicity, while the high growth rates of S. squarrosum in nutrient‐rich and highly acidic groundwater allow early establishment and rapid expansion. Conclusions: If measures to improve fen base status occur in environments of increased nutrient (P) availability, the management may not lead to the desired restoration of brown moss stages, but instead to rapid acidification by S. squarrosum.  相似文献   

3.
We examined effects of abandonment on species diversity and species composition by comparing 21 calcareous fen meadows in the pre-alpine zone of central and northeastern Switzerland. Meadows were divided into three classes of successional stages (mown: annually mown in late summer, young fallow: 4–15 years, and old fallow: >15 years of abandonment). In each fen, we measured litter mass in four 20 cm×20 cm plots, as well as (aboveground) biomass and species density (number of species per unit area) of bryophytes and vascular plants. Bryophyte biomass was reduced in abandoned fens, whereas litter mass and aboveground biomass of vascular plants increased. Species density of both taxonomic groups was lower in abandoned than in mown fens. Young and old successional stages were not different except for bryophytes, for which old successional stages had higher species density than young stages. We used litter mass and aboveground biomass of vascular plants as covariables in analyses of variance to reveal their effects on species density of both taxonomic groups. For bryophytes, litter mass was more important than vascular plant biomass in explaining variance of species density. This indicates severe effects of burying by litter on bryophyte species density. For species density of vascular plants, both vascular plant biomass and litter mass were of similar importance in explaining the decreased species density. Canonical correspondence analyses showed that abandonment also had an effect on species composition of both bryophytes and vascular plants. However, young and old successional stages were not different indicating fast initial changes after abandonment, but slow secondary succession afterwards. Furthermore, indicator species analysis showed that there was no establishment of new species after abandonment that might dramatically alter fen communities. Re-introduction of mowing as a nature conservation strategy may thus be very promising – even for old fallows.  相似文献   

4.
The relationships between vegetation components, surface water chemistry and peat chemistry from 23 fens in boreal Alberta, Canada, substantiate important differences along the poor to rich fen gradient. Each of the three fen types have their own characteristic species. The extreme-rich fens are characterized by Calliergon trifarium, Drepanocladus revolvens, Scirpus hudsonianus, S. cespitosus, Scorpidium scorpioides, and Tofieldia glutinosa. Moderate-rich fens are characterized by Brachythecium mildeanum, Carex diandra, Drepanocladus vernicosus, D. aduncus, and D. polycarpus. Poor fens are characterized by Carex pauciflora, Drepanocladus exannulatus, Sphagnum angustifolium, S. jensenii, and S. majus. Moderate-rich fens have fewer species in common with poor fens than with extreme-rich fens, while species richness is highest in the moderate-rich fens and lowest in poor fens. Variation in vascular plant occurrence appears to be more associated with nutrient levels, while bryophytes are more affected by changes in acidity and mineral elements. Based on chemical criteria, the three fen types are clearly separated by surface water pH, calcium, magnesium, and conductivity, but are less clearly differentiated by the nitrogen and phosphorus components of the surface waters. Moderate-rich fens are chemically variable both temporally and spatially, whereas poor fens and extreme-rich fens are more stable ecosystems. Whereas components of alkalinity-acidity are the most important factors that distinguish the three fen types in western Canada, nutrient concentrations in the surface waters generally do not differ appreciably in the three fen types.  相似文献   

5.
Peatlands in northern Alberta, Canada, are being rapidly impacted by oil sands activities, with potentially long‐term consequences for their recovery. In situ oil sands extraction requires exploration of oil resources on a dense network of drilling pads across the landscape. This study examined the recovery of wooded moderate‐rich (WMR) fens 10 years after abandonment of these sites with minimal restorative measures. Bryophyte and vascular plant diversity, site microtopography, and water chemistry were assessed on drilling pads and in adjacent areas of undisturbed reference habitat. WMR fens affected by drilling activities were divided a priori into two groups based on strongly divergent trends in their successional development. One group represented the majority of WMR fens observed on the land base; at these sites hummock‐forming mosses including minerotrophic Sphagnum species were infrequent and tree recruitment was almost absent. The other group was dominated by Sphagnum species, had Picea mariana and Larix laricina recruitment, and appeared to recover more quickly. Both groups had high abundance of wetland sedges, notably Carex aquatilis. Further, drilling pads belonging to the first group had a high water table, limited elevated microsites, and had surface flooding over a portion of the growing season, in contrast to Sphagnum‐dominated sites. Development of the aquatic, bryophyte‐poor wetland type is comparable to early stages of wetland succession and these systems will recover relatively slowly, likely from decades to more than a century. Restoring part of the vertical distribution of microhabitats before abandonment of these pads could stimulate the successional recovery of vegetation.  相似文献   

6.
Peatlands can be classified into fens and bogs based on their hydrology. Development of fens to bogs is accompanied by the invasion of Sphagnum species. The purpose of this study was to determine how the decomposition process in fens is influenced by the transition from a vascular plant-dominated system to a Sphagnum -dominated system. We carried out a reciprocal litter bag experiment, using litter of Carex diandra , C. lasiocarpa , Sphagnum papillosum and S. squarrosum in a fen dominated by Sphagnum species and a fen without Sphagnum . Decomposition rate and nitrogen and phosphorus dynamics of the plant litter were measured in a field experiment for two years. Decomposition rate was highest for the Carex litter types and lowest for the Sphagnum litter types. Surprisingly, decomposition rates hardly differed between the two sites. Nutrient dynamics, however, showed a clear site-effect: In the Sphagnum site net mineralization was observed for all litter types whereas in the Carex site net immobilization was observed. These results show that carbon and nutrient cycles were coupled in a different way in a Sphagnum -dominated and a Carex -dominated site, respectively. Nutrient availability and adaptation of the microbial community to nutritional and other environmental conditions may be the main regulators of carbon and nutrient cycles in these peatlands.  相似文献   

7.
系统研究了南方5个亚热带森林生态系统地表植被的动态变化情况.研究方法是:在每个研究区域内,按照地形梯度分别布设50个1m2 的样方,记录样方内所有物种的频度及相关的环境变量,5个研究区域共设250个样方,每个样方分别调查两次.通过单元及多元统计方法分析表明:维管植物物种频度在一个区域明显下降,另二个区域显著增加;苔藓物种频度在一个区域有明显下降,另一个区域明显增加;苔藓物种数量在3个区域显著增加,另二个区域显著下降;维管植物物种数量显著增加在二个区域;物种组成沿着第一个植被梯度轴DCA 1没有显著变化,沿着第二个植被梯度轴DCA 2在二个区域有显著变化.综合分析表明,苔藓对气候变化及其波动反映敏感,是较好的气候变化及气候波动生物指示因子,而管植物数量及频度的变化没有明显证据显示与土壤酸化和大气污染有紧密关系.  相似文献   

8.
E. Aude  R. Ejrnæs 《Oikos》2005,109(2):323-330
A three-year multi-factorial microcosm experiment simulating fertilisation, defoliation and the composition of vascular vegetation in a dry grassland succession was used to test four hypotheses concerning the establishment and survival of bryophytes in grassland vegetation. H1: bryophyte cover may be used to predict bryophyte species richness. H2: bryophyte richness is suppressed at high nutrient levels and promoted by defoliation of vascular plants. H3: species richness of bryophytes is influenced by the species composition of the vascular vegetation. H4: bryophyte species richness is negatively correlated with vascular plant biomass.
The relationship between bryophyte richness and bryophyte cover was found to follow the classical species-area richness curve. Bryophyte species richness responded positively to defoliation and negatively to fertilisation. The species composition of vascular vegetation had no significant effect on bryophyte richness. Bryophyte species richness was lower at high vascular plant biomass and vascular plant dry weight above 400 g m−2 appeared fatal to bryophytes. At high nutrient levels, defoliation increased bryophyte richness, but defoliation did not fully compensate for the negative effect of fertilisation. The study reinforces the concern for short lived shuttle bryophytes in the agricultural landscape.  相似文献   

9.
Question: How does restoration affect the hydrology and the understorey vegetation of managed pine fens? Location: Oligotrophic pine fens in Natura 2000 areas in Kainuu, eastern Finland. Methods: Eleven managed pine fens and eight pristine reference pine fens were chosen for the study in 2005. The managed fens, which had been drained for forestry during the 1970s and 1980s, were restored in 2007. The water table was monitored in all fens over four growing seasons during 2006 to 2009, and vegetation was surveyed from permanent sample plots in 2006 and 2009. Results: Before restoration in 2006, the water table was at a significantly lower level in the managed fens compared with the pristine fens. Immediately after restoration, the water table rose to the same level as in the pristine fens, and this change was permanent. Forest drainage had had little impact on the understorey vegetation of the managed fens in the three decades before restoration, with species typical of pristine fens still dominating the sites. Forest dwarf shrubs and feather mosses had started to increase in cover, but mire dwarf shrubs and Sphagnum mosses still dominated the managed fens. Only the typical hollow species Sphagnum majus, Sphagnum balticum and Scheuzeria palustris were missing from the managed fens. Two years after restoration, the changes in species composition were also marginal, with increased cover of mire dwarf shrubs and sedges being the only significant change. Conclusions: The success of restoration of oligotrophic pine fens seems likely, given that changes in hydrological functioning occurred rapidly, and since little change has occurred in the vegetation composition after draining. Speeding up the regeneration process in these peatland types by restoration may, therefore, be recommended, especially if the drainage effect extends to nearby pristine mires and influences their biodiversity.  相似文献   

10.
 对壤塘县二林场4个不同时间皆伐和造林后形成的幼林地, 开展了苔藓植物和维管植物多样性调查, 采用方差分析法对苔藓植物特征进 行差异性检验, 对苔藓植物结构特征和环境因子作偏相关性分析。结果表明: 1)幼林地4个阶段的发展进程中苔藓物种组成变化显著。优势种相 似, 为喜光耐旱的侧蒴藓物种; 一些耐阴喜湿的种类种群扩大成为林下局部生境优势物种; 同时由于干扰造成地表裸露后产生耐旱土生或石生 性广泛分布的藓类。2)随着幼林地植被恢复进程, 苔藓物种丰富度(22~37)和多样性指数(0.37~1.08)呈增长趋势。结构特征在4个幼林地表现 出较强的差异性。3)乔木与灌木层盖度与苔藓植物的发育呈正相关, 灌木层盖度的发育明显促进了苔藓植物丰富度的增加, 而基于喜光先锋的 禾草为主的草本发育程度很高, 与凋落物生物量一起抑制了苔藓的发育。随幼林地发展, 乔、灌、凋落物发育性质及其相互作用发生动态变化 。因此加速幼林地乔、灌层片的发育对于促进地表苔藓植物多样性的恢复与层片发育具有重要作用。  相似文献   

11.
In the western part of the Carpathian flysch zone, aquifers host several springwater chemistry types. Four vegetation types, distinguished along the poor-rich gradient (tufa-forming and peat forming brown moss fens, moderately rich and poorSphagnum fens), have been compared with respect to the main habitat factors. Water calcium and magnesium concentrations, pH and conductivity as well as the soil organic carbon content were the properties measured that showed the strongest correlation with the main vegetation gradient (the poor-rich gradient). Further, significant differences in iron, sodium, potassium, sulphate and phosphate concentrations were also found between pairs of related vegetation types. The range of calcium concentrations is wide (2–300 mg/l). The calcium concentration in tufa-forming springs is higher than values usually reported from northern and western Europe. Tufa formation is influenced not only by high calcium concentrations, but also by the total chemical composition of springwater and both climatic and topographic conditions. There is a great excess of cations over Cl and SO 4 2− , balanced by HCO 3 and CO 3 2− in springs with the most intense tufa precipitation. Unusually high calcium concentrations combined with high iron concentrations were found in peat-forming brown moss fens. RichSphagnum-fens with calcitolerantSphagnum species are distinctively low in phosphates. The Western Carpathian poor fens dominated bySphagnum flexuosum have water and soil calcium concentrations comparable to those reported from rich fens of some other areas. The springwater of these fens are rich in iron, phosphates and sulphates. The poorest spring fens withSphagnum fallax, S. magellanicum, S. papillosum andS. auriculatum are not only poor in calcium, but also in iron, sodium and potassium.  相似文献   

12.
Vegetation-environment relationships were investigated in fens of the T?eboň basin (Czech Republic), which are enriched by nutrients and calcium from intensively managed and limed fishponds to test the hypothesis of altered gradient structure after long-term nutrient enrichment in fens. Water-table depth, pH, conductivity, N-NH 4 + , N-NO 3 ? , PO 4 3? , total P, SO 4 2? , K+, Ca2+, Mg2+ and Fe were measured four times in 30 vegetation plots of 16 m2 during the 2004 vegetation season. Both constrained and unconstrained ordination (DCA, CCA) were used to relate environmental factors to the species composition of the vegetation. The relationships among particular factors were revealed using PCA. Four fen vegetation types obtained by TWINSPAN classification were compared with measured factors using repeated measures ANOVA. Vegetation types differed significantly in water-table depth, water pH and Ca2+, Mg2+, K+, and N-NO 3 ? content. The concentration of major nutrients fluctuated noticeably during vegetation season and displayed large variation within vegetation types. Temporarily the concentration of different nutrients reached extremely high values. However, high nutrient supply has not altered the gradient structure of the vegetation. Water pH and water-table depths were found to be two major determinants of species variation in fishpond-margin fens, as in the majority of other environments studied throughout the Northern Hemisphere. Species richness of both vascular plants and bryophytes was partly explained by pH. However, the extent of variation in total mineral richness and potassium concentration were the next two most important variables determining bryophyte species richness. Water in flooded poor-fen vegetation, directly affected by water from limed fishponds, had calcium and magnesium concentration similar to fishpond water. The calcium concentrations of about 20 mg l?1 in typical poor-fen vegetation have no analogy in the ecological literature. High phosphorus level presumably buffers the effect of calcium by enhancing bryophyte biomass depositing superfluous calcium. In conclusion, extremely high long-term nutrient supply to fishpond-margin fens have not altered gradient structure, but shifted chemical limits of plant communities.  相似文献   

13.
We fill a gap in understanding wetland vegetation diversity and relationship with environmental determinants in Bulgarian high mountains. A total of 615 phytosociological samples were taken from springs, mires, wet meadows and tall-forb habitats throughout Bulgaria, of which 234 relevés are from mire and spring vegetation above timberline. The vegetation was classified by TWINSPAN and the resulting vegetation types were reproduced by the formal definitions using the combination of Cocktail species groups based on phi-coefficient of joint co-occurrence of the species. Nine vegetation types of springs and fens have been clearly delimited above the timberline. All vegetation types include Balkan endemic species, the representation of which varies. Fens generally harbour more Balkan endemics than do springs, with the exception of species-poor high-altitude Drepanocladetum exannulati. The gradient structure of the vegetation was revealed by DCA and by CCA with forward selection of environmental factors. The major determinants of vegetation variation strongly differ above and below the timberline and likewise between springs and fens. The base-richness gradient controls the floristic variation of Bulgarian submontane fens, whereas the complete data set including both submontane and subalpine fens is governed by the altitude gradient from lowland and basin fens to subalpine fens rich in Balkan endemics. When focusing on sites above the timberline only, the first DCA axis separates fens from springs without organic matter. The major species turnover in springs follows the variation in water pH and mineral content in water, whereas fen vegetation variation is primarily controlled by succession gradient of peat accumulation. Altitude remains an important factor in all cases. Weak correlation between water pH and conductivity was found. This correlation was even statistically insignificant in fens above the timberline. Water pH is not influenced by mineral richness in Bulgarian high mountains, since it is buffered by decomposition of organic matter in fens. In springs, pH reaches maximum values due to strong aeration caused by water flow. The plant species richness decreases significantly with increasing altitude. The increase of species richness towards circumneutral pH, often found in mires, was not confirmed in Bulgarian high mountains. The correlation between species richness and pH was significant only when arctic-alpine species and allied European high-mountain species were considered separately. The richness of boreal species was independent on pH. Some of them had their optima shifted to more acidic fens as compared to regions below the timberline. Our results suggest that subalpine spring and fen vegetation should be analysed separately with respect to vegetation-environment correlations. Separate analysis of fens below and above timberline is quite appropriate.  相似文献   

14.
Summary Release of inorganic N and P in the organic soils of three small quaking fens in The Netherlands was studied by means of in situ incubation of the peat soil in plastic bottles. One of the fens had higher biomass production and lower species richness than the other two. The former fen is located in an area with downward groundwater percolation, whereas the latter fens are situated in an area of upward seepage of groundwater rich in calcium and bicarbonate.Mineralization of N proved to be slow in the low-productive fens, and 6 times faster in the highly productive fen. In the latter fen the amount of N mineralized during a certain period exceeded by far the amount accumulated in that period in the above-ground parts of the vegetation.The release of inorganic P was extremely slow in the two low-productive fens and rapid in the highly productive fen. The release rates were not related to the total P content of the soils. The slow P release in the low-productive fens may be due to the continuous inflow of groundwater rich in Ca, Al and Fe compounds.It can be concluded that the soil is a potentially large source of inorganic N and P in quaking fens. The importance of the soil versus other N and P sources is greater in nutrient-rich fens.  相似文献   

15.
Understory Vegetation Dynamics of North American Boreal Forests   总被引:2,自引:0,他引:2  
Understory vegetation is the most diverse and least understood component of North American boreal forests. Understory communities are important as they act as drivers of overstory succession and nutrient cycling. The objective of this review was to examine how understory vegetation abundance, composition, and diversity change with stand development after a major stand replacing disturbance. Understory vegetation abundance and diversity increase rapidly after fire, in response to abundant resources and an influx of disturbance adapted species. The highest diversity occurs within the first 40 years following fire, and declines indefinitely thereafter as a result of decreasing productivity and increased dominance of a small number of late successional feather mosses and woody plant species. Vascular plant and bryophyte/lichen communities undergo very different successional changes. Vascular plant communities are dynamic and change more dramatically with time after fire, whereas bryophyte and lichen communities are much slower to establish and change over time. Considerable variations in these processes exist depending on canopy composition, site condition, regional climate, and frequently occurring non-stand-replacing disturbances. Forest management practices represent a unique disturbance process and can result in different understory vegetation communities from those observed for natural processes, with potential implications for overstory succession and long-term productivity. Because of the importance of understory vegetation on nutrient cycling and overstory composition, post-harvest treatments emulating stand-replacing fire are required to maintain understory diversity, composition, and promote stand productivity in boreal forests.  相似文献   

16.
《Journal of bryology》2013,35(3):431-438
Abstract

In Dutch rich fens, mid-successional stages dominated by Sphagnum subnitens are rapidly being replaced by other vegetation, dominated by S. fallax.

In both species growth was strongly reduced in more mineral-rich ground water and simulated river water, compared to growth in rain water.

Both species were positively affected by added phosphorus supply, whereas added supply of nitrogen did not alter growth rates.

Nutrient supply seemed to compensate for the intolerance to high mineral levels in S. fallax: nutrient addition stimulated growth in length in ground water and simulated river water. Such compensation was not found in S. subnitens.

Growth in mixed culture positively affected Sphagnum subnitens and negatively affected its successor S. fallax.

The success of Sphagnum fallax in early stages of succession in more eutrophic fens may to some extent be explained by its tolerance to high mineral levels with increased nutrient supply.  相似文献   

17.
Small headwater fens at high elevations exist in the dry climatic regime of western Colorado, despite increasing demands for water development since the 1800’s. Fens on Grand Mesa have accumulated plant material as peat for thousands of years due to cold temperatures and consistently saturated soils. The peatlands maintain unique plant communities, wildlife habitat, biodiversity, and carbon storage. We located and differentiated 88 fens from 15 wet meadows and 2 marshes on Grand Mesa. Field work included determining vegetation, soils, moisture regimes, and impacts from human activities. All fens were groundwater-supported systems that occurred in depressions and slopes within sedimentary landslide and volcanic glacial till landscapes. Fens occupied 400 ha or less than 1 % of the 46,845 ha research area and ranged in size from 1 to 46 ha. Peat water pH in undisturbed sites ranged from 4.3 to 7.1. Most fens had plant communities dominated by sedges (Carex) with an understory of brown mosses. Variation in vegetation was controlled by stand wetness, water table level, organic C, conductivity (EC), and temperature °C. Fen soils ranged from 13.6 to 44.1 % organic C with a mean of 30.3 %. Species diversity in fens was restricted by cold short growing seasons, stressful anaerobic conditions, and disturbance. Multivariate analysis was used to analyze relationships between vegetation, environmental, and impact variables. Stand wetness, water table level, OC, electrical conductivity (EC), and temperature were used to analyze vegetation variance in undisturbed fens, wet meadows, and marshes. Vegetation composition in impacted fens was influenced by flooding, sedimentation, stand wetness, water table level, OC, EC, and temperature. Hydrologically modified fens supported 58 plant species compared to 101 species in undisturbed fens. Analysis of historical 1936–2007 aerial photographs and condition scalars helped quantify impacts of human activities in fens as well as vegetation changes. Fourteen fens had evidence of peat subsidence, from organic soil collapse, blocks of peat in the margins, soil instability, and differences in surface peat height between the fen soil surface and the annually flooded soil surface. Of 374 ha of fens in the Grand Mesa study area, 294 ha (79 %) have been impacted by human activities such as ditching, drainage, flooding, or vehicular rutting. Many fens had little restoration potential due to severe hydrological and peat mass impacts, water rights, or the cost of restoration.  相似文献   

18.
We studied mechanisms of vegetation change in fens subject to succession from open water to floating mats and finally herbaceous rich-fens. Earlier research showed that these systems are characterized by transient seed banks. Our main question was whether seedlings of later successional fen stages are already present in earlier stages, remaining subordinate in the vegetation until conditions become suitable for them. If, however, conditions during succession change in a way that only a limited set of species can survive as seedlings during each of the successional stages, no seedling bank will exist. The transient character of the seeds would then imply that seeds will not germinate and will subsequently die and that seeds that have germinated in the “wrong” stage will not become established. We hypothesized that: (1) germination and seedling survival of fen species are significantly better in the successional fen stage for which these species are characteristic, (2) as a consequence no seedling banks occur in these fens. In a field experiment, seeds of five characteristic fen species in the standing vegetation of three successional fen stages i.e. raft fen, quaking fen and rich fen were sown in each of these stages in a turf pond in the Tienhoven area, The Netherlands. Germination and seedling survival were measured over two growing seasons together with environmental variables. Germination was higher in the “own” stage for all species groups as was survival for quaking fen species and rich fen species. For both these stages, percentage of germination and survival of four out of five characteristic species were significantly higher in the “own” stage. Germination and survival can be considered stage-dependent and it was concluded that seedling banks do not exist in these fens. Site-specific environmental variables act as a sieve and differentiate on species presence already during early life history stages. We found clues that the environmental sieve acts at the level of nutrient availability, tolerance for high sulphide concentration and light climate. Because of the transient seed bank and absence of a seedling bank in these fen wetlands, successful establishment of species necessitates a continuous dispersal of characteristic species until the environmental conditions permit establishment. This also implies that species of the whole successional sere should be present within dispersal distance.  相似文献   

19.
Quaking rich fens dominated by boreal semi-aquatic brown-mosses such as Scorpidium scorpioides and Calliergon trifarium are extremely rare in the Carpathians. These fens harbour endangered species persisting at few localities in the region. However, their phytosociological classification has not been sufficiently solved yet, because they lack Sphagnum species as well as calcicole species characteristic for the Caricion davallianae alliance. A recent pan-European synthesis on fen vegetation suggests that these fens belong to the Stygio-Caricion limosae alliance (boreal rich fen vegetation). The isolated occurrence of this alliance southward of the boreal zone and outside the Alps is rather exceptional and might represent a relict from an early post-glacial period. In this study, we compared phytosociological data for the Stygio-Caricion limosae alliance between Northern Europe and the Carpathians plus adjacent regions (the Bohemian Massif, the Dinaric Alps) using NMDS and cluster analysis. We found that the species composition of brown-moss quaking rich fens in Central and Southeastern Europe corresponds well with that in Northern Europe, confirming their assignment to Stygio-Caricion limosae. We further reconstructed the potential past distribution of the alliance in Czech Republic and Slovakia using available floristic and macrofossil data. Macrofossil data suggest that this vegetation type had been much more common in Central Europe and that today it persists only in ancient fens, showing the long-term stability of environmental conditions. The main causes of its present-day rarity are Middle-Holocene woodland phases in fens and recent water table decreases caused by anthropogenic deterioration of the water regime in the landscape.  相似文献   

20.
Data from the long-term experiment on sheep grazing versus zero sheep grazing (i.e. in an enclosure) on the composition of the Juncus squarrosus grassland at the Moor House NNR are presented. The data have been analysed to assess change in (1) the abundance of individual species, (2) higher plant and bryophyte communities, and (3) vegetation structure. The higher plant data suggested that both the enclosed-and grazed plots were changing in the same direction, but the enclosed plot was moving much faster. The general tendency was towards a blanket bog vegetation dominated by Eriophorum vaginatum and Calluna vulgaris. Juncus squarrosus has declined very quickly in the enclosed plot, but there has also been a slower decline in the grazed one. A significant increase in Calluna vulgaris has occurred only in the enclosed plot. In contrast, the bryophyte data showed completely different successional trajectories in the two treatment plots.The vegetation structure changed markedly after release from grazing, with a decrease in phytomass, but increase in necromass in the lowest height strata. There was no noticeable change in structure over the 18 year period in the grazed plot.Particular problems found in this study were that some species either fluctuated widely in response, or changed in a curvilinear manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号