首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mangrove trees tend to be larger and mangrove communities more diverse in tropical latitudes, particularly where there is high rainfall. Variation in the structure, growth and productivity of mangrove forests over climatic gradients suggests they are sensitive to variations in climate, but evidence of changes in the structure and growth of mangrove trees in response to climatic variation is scarce. Bomb-pulse radiocarbon dating provides accurate dates of recent wood formation and tree age of tropical and subtropical tree species. Here, we used radiocarbon techniques combined with X-ray densitometry to develop a wood density chronology for the mangrove Avicennia marina in the Exmouth Gulf, Western Australia (WA). We tested whether wood density chronologies of A. marina were sensitive to variation in the Pacific Decadal Oscillation Index, which reflects temperature fluctuations in the Pacific Ocean and is linked to the instrumental rainfall record in north WA. We also determined growth rates in mangrove trees from the Exmouth Gulf, WA. We found that seaward fringing A. marina trees (∼10 cm diameter) were 48±1 to 89±23 years old (mean ± 1σ) and that their growth rates ranged from 4.08±2.36 to 5.30±3.33 mm/yr (mean ±1σ). The wood density of our studied mangrove trees decreased with increases in the Pacific Decadal Oscillation Index. Future predicted drying of the region will likely lead to further reductions in wood density and their associated growth rates in mangrove forests in the region.  相似文献   

2.
Tropical West African savannas are exposed to high climatic variability with potential impacts on tree growth, forest dynamics and ecosystem productivity. In such context, understanding the long-term ecological responses of savanna trees to changing environmental conditions is of great relevance for taking appropriate conservation actions. We conducted the first study on tree-ring analysis and quantitative wood anatomy on Afzelia africana Sm. in Burkina Faso, to investigate the life-span growth trajectories and wood anatomical adjustment to site and to climate variations. A total of 24 stem discs was collected in four protected forests along the Sudano-sahelian and the Sudanian climatic zones. Wood samples were analyzed using standard dendrochronological methods and quantitative wood anatomy. The mean annual growth rates varied from 1.002 (± 0.249) mm. year−1 in the Sudanian zone to 1.128 (± 0.436) mm. year−1 in the Sudano-sahelian zone. Analysis of growth trajectories showed high variations within sites and between climatic zones. Wood anatomical traits significantly varied between sites. Principal Component Analysis revealed strong relationships between ring width, wood density and vessel traits, with 82.81 % of the total variance explained. Vessel size significantly increased from the pith to the bark, highlighting the ontogenetic effects on xylem anatomical variations. Inverse relationships were found between vessel size and vessel density across the driest site and the wettest site, suggesting that the higher the rainfall, the taller the tree, the larger vessel size, but the lower vessel density. By contrast, more arid conditions and high evapotranspiration lead to smaller vessel sizes and higher vessel density. Such anatomical adjustments highlight the trade-offs between water conductance efficiency and hydraulic safety, and emphasize physiological responses to climate variability. These variations on the long-term dynamics and xylem anatomical patterns underline complex interactions between ontogenetic effects and contrasting environmental factors that affect the eco-physiological functioning of A. africana throughout the Sudanian region.  相似文献   

3.
4.
In hardwoods such as Eucalyptus spp., xylem (wood) is a heterogeneous tissue consisting of multiple cell types. As such, xylem development involves multiple complex interactions. To describe and understand xylem development, and ultimately predict the resultant wood properties, a process-based approach to modelling wood property variation is potentially very useful. In this paper, a new model (CAMBIUM), which incorporates concepts of these processes, is described. CAMBIUM predicts how wood density and fibre and vessel anatomical properties vary from pith-to-bark at a daily time step as a function of changing environmental conditions and a set of simulated physiological processes. Simulations from an existing process-based model of stand development (CABALA) are used as inputs. A key feature of CAMBIUM is a model of the interaction between different xylem cell types. Some weaknesses were identified in the ability of the model to simulate vessel spatial patterns and frequencies, emphasizing the complexities inherent in this aspect of angiosperm wood formation. The model was, however, able to provide realistic estimates of short-term variation and temporal ranges in eucalypt fibre diameter and secondary wall development and wood density.  相似文献   

5.
Wood density plays a key role in ecological strategies and life history variation in woody plants, but little is known about its anatomical basis in shrubs. We quantified the relationships between wood density, anatomy, and climate in 61 shrub species from eight field sites along latitudinal belts between 31° and 35° in North and South America. Measurements included cell dimensions, transverse areas of each xylem cell type and percentage contact between different cell types and vessels. Wood density was more significantly correlated with precipitation and aridity than with temperature. High wood density was achieved through reductions in cell size and increases in the proportion of wall relative to lumen. Wood density was independent of vessel traits, suggesting that this trait does not impose conduction limitations in shrubs. The proportion of fibers in direct contact with vessels decreased with and was independent of wood density, indicating that the number of fiber-vessel contacts does not explain the previously observed correlation between wood density and implosion resistance. Axial and radial parenchyma each had a significant but opposite association with wood density. Fiber size and wall thickness link wood density, life history, and ecological strategies by controlling the proportion of carbon invested per unit stem volume.  相似文献   

6.
Faster growth in tropical trees is usually associated with higher mortality rates, but the mechanisms underlying this relationship are poorly understood. In this study, we investigate how tree growth patterns are linked with environmental conditions and hydraulic traits, by monitoring the cambial growth of 9 tropical cloud forest tree species coupled with numerical simulations using an optimization model. We find that fast‐growing trees have lower xylem safety margins than slow‐growing trees and this pattern is not necessarily linked to differences in stomatal behaviour or environmental conditions when growth occurs. Instead, fast‐growing trees have xylem vessels that are more vulnerable to cavitation and lower density wood. We propose the growth ‐ xylem vulnerability trade‐off represents a wood hydraulic economics spectrum similar to the classic leaf economic spectrum, and show through numerical simulations that this trade‐off can emerge from the coordination between growth rates, wood density, and xylem vulnerability to cavitation. Our results suggest that vulnerability to hydraulic failure might be related with the growth‐mortality trade‐off in tropical trees, determining important life history differences. These findings are important in furthering our understanding of xylem hydraulic functioning and its implications on plant carbon economy.  相似文献   

7.
The effect of exogenous nitrate on the sucrose-metabolizing enzyme activities—sucrose synthase (SS) and apoplastic invertase (ApInv)—in the xylem and phloem of the silver (Betula pendula Roth var. pendula) and Karelian (B. pendula var. carelica) birches (the latter is well known for its abnormal, patterned wood) has been studied. A stable correlation between the enzyme activities and deviations in the growth and development of stem vascular tissues during cambial growth has been demonstrated. Formation of the birch wood with a common structure is associated with high SS activity. In this case, the reaction yields UDP glucose, which is utilized mainly for synthesis of the cell wall components of vessels and fiber tracheids. As for the Karelian birch, the SS activity in the xylem formation zone is decreased, which complies with a higher sucrose level in the tissue. The excess sucrose is released into the apoplast to be cleaved by ApInv. The resulting hexoses induce storage metabolism, thereby increasing the amount of storage substances and the share of storage parenchyma cells in the xylem. As a result, the Karelian birch wood acquires large inclusions in the parenchyma, which render a characteristic pattern. A change in the ratio of SS to ApInv activities underlies a great variety in the degree of wood patterning observed in Karelian birch trees. In the common silver birch, the nitrate application increases the sucrose utilization via SS pathway, which results in an increase in wood growth. In the Karelian birch xylem, nitrates lead to a decrease in both the SS (a decrease in wood growth) and ApInv (a decrease in the amount of parenchyma, i.e., normalization of the wood structure). The sucrose metabolizing in the xylem decreases on the background of an increase in its utilization in the phloem, where both enzyme activities elevate. It is assumed that the fact that the Karelian birch distribution range is limited by rich soils can be determined by a shift from intensive apoplastic sucrose utilization zone towards the phloem caused by high doses of nitrogen nutrition.  相似文献   

8.
Secondary xylem development in Arabidopsis: a model for wood formation   总被引:10,自引:0,他引:10  
Our understanding of the molecular controls regulating the identity of the vascular cambium and the development of secondary xylem and phloem have not yet benefited much from the use of Arabidopsis as a genetic system. Under appropriate growth conditions Arabidopsis undergoes extensive secondary growth in the hypocotyl, with the development of both a vascular and a cork cambium. The secondary xylem of the hypocotyl develops in two phases, an early phase in which only vessel elements mature and a later stage in which both vessel elements and fibres are found. During this second phase the secondary xylem of Arabidopsis closely resembles the anatomy of the wood of an angiosperm tree, and can be used to address basic questions about wood formation. The development of the vascular cambium and secondary growth in Arabidopsis hypocotyl is described and its utility as a model for wood formation in trees is considered.  相似文献   

9.
Summary Xylem (wood) tissue in plants functions both for mechanical support and water transport. Since vines are mechanical parasites, they allocate less biomass for xylem tissue than do free-standing trees or shrubs. With-in the genus Bauhinia, stems of vine species were found to have not only less xylem per distal leaf area, but also less phloem and cortical tissue when compared to tree and shrub species. The phloem and cortical reductions are interpreted as an indirect effect of the developmental/geometric constraints imposed by the evolution of a reduced mechanical system. Apparently vines overcame these constraints with the evolution of wider vessels and wider sieve tubes and with many types of variant (anomalous) secondary growth. The long and wide vessels of vines, which compensate hydraulically for the reduced xylem areas, may help limit the distribution of vine species in nature.  相似文献   

10.
Riparian ecotones in the fynbos biome of South Africa are heavily invaded by woody invasive alien species, which are known to reduce water supply to downstream environments. To explore whether variation in species-specific functional traits pertaining to drought-tolerance exist, we investigated wood anatomical traits of key native riparian species and the invasive Acacia mearnsii across different water availability proxies. Wood density, vessel resistance against implosion, vessel lumen diameter and vessel wall thickness were measured. Wood density varied significantly between species, with A. mearnsii having denser wood at sites in rivers with high discharge. As higher wood density is indicative of increased drought tolerance and typical of drier sites, this counter-intuitive finding suggests that increased wood density was more closely related to midday water stress, than streamflow quantity per se. Wood density was positively correlated with vessel resistance against implosion. Higher wood density may also be evidence that A. mearnsii is more resistant against drought-induced cavitation than the studied native species. The observed plastic response of A. mearnsii anatomical traits to variable water availability indicates the ability of this species to persist under various environmental conditions. A possible non-causal relationship between wood anatomy and drought tolerance in these riparian systems is discussed.  相似文献   

11.
Circular patches of bark were surgically isolated on the sides of sugar maple (Acer saccharum Marsh.) trees at breast height at various times during the dormant and growing seasons. Subsequently, samples of wood and attached bark were taken from isolated and control sites to determine the effects of isolation of the bark on cambial activity and xylem and phloem development. In control sites cambial activity and xylem and phloem development occurred normally. Isolation of bark during the dormant season (in November, February, or March) prevented initiation of cambial activity and xylem and phloem development in isolated areas of half of the trees. Varying degrees of cambial activity (periclinal divisions) occurred in the remaining isolated areas, but normal cambial activity and xylem and phloem development were prevented. Isolation of bark after initiation of cambial activity and phloem differentiation, but prior to initiation of xylem differentiation, resulted in the formation of very narrow xylem and phloem increments with atypically short vessel members and sieve-tube members, respectively. The xylem increments consisted primarily of parenchyma cells. Isolation of bark after initiation of xylem differentiation resulted in curtailment of secondary wall formation in the last-formed part of many increments. The last-formed vessel members of all these xylem increments were atypically short. Similarly, the last formed sieve-tube members of corresponding phloem increments were atypically short. The atypically short cells in the xylem and phloem of isolated areas reflected the effect of isolation on the cambial region, viz., the subdivision of all fusiform cells into strands of cells. Ultimately, the strands of short fusiform cells lapsed into maturity, leaving only strands of parenchymatous elements between xylem and phloem.  相似文献   

12.
DIGBY  J.; WAREING  P. F. 《Annals of botany》1966,30(3):539-548
When indole-3-acetic acid (IAA) is applied to woody shoots cambialdivision is stimulated and the cambial derivatives differentiateto produce xylem tissue. When gibberellic acid (GA) is applied,cambial division occurs but the resultant derivatives on thexylem side of the cambium remain undifferentiated. The relativelevels of applied IAA and GA are important in determining whethermainly xylem or phloem tissue is produced. High IAA/low GA concentrationsfavour xylem formation, whereas low IAA/high GA concentrationsfavour phloem production. The new phloem tissue produced asa result of hormone treatment is fully differentiated, containingsieve elements and sieve plates. IAA is important in promotingthe elongation of the cambial derivatives to produce xylem vesseland fibre elements, though in the case of xylem fibres appliedGA causes further elongation. IAA is an important factor indetermining vessel diameter in the ring-porous species Robiniapseudacacia, high levels of applied IAA giving wide springwood-typevessels and low levels giving narrow ‘summerwood’vessels.  相似文献   

13.
Wood density is thought to be an important indicator of plant life history because it is coupled to many aspects of whole-plant form and function. We used a hierarchical Bayesian approach to explain variation in mortality rates with wood density, drawing on data for 765,500 trees from 1639 species at 10 sites located across the Old and New World tropics. Mortality rates declined with increasing wood density at five of 10 sites. Similar negative trends were detected at four additional sites, while one site showed no relationship. Our model explained 40% of variation in mortality on average. Both wood density and mortality rates show a high degree of phylogenetic conservatism. Grouping species by family across sites in a second analysis, we found considerable variation in the relationship between wood density and mortality, with 10 of 27 families demonstrating a strong negative relationship. Our results highlight the importance of wood density as a functional trait in tropical forests, as it is strongly linked to variation in survival. However, the relationship varied among families, plots, and even census intervals within sites, indicating that the factors responsible for the relationship between wood density and mortality vary spatially, taxonomically and temporally.  相似文献   

14.
不同生境下蓝桉的木材解剖研究   总被引:9,自引:0,他引:9  
用光镜及扫描电镜对不同生境下的蓝桉(Eucalyptusglobulus Labill.)木材结构进行了解剖学观察,描述了木材结构特征。以蓝桉木材的11 个主要特征——导管频率、单孔率、导管直径、导管分子长度、管胞长度和直径、纤维管胞长度和直径、纤维长度、射线频率和高度为指标,对生长在不同生境下的蓝桉进行比较发现:随着纬度的增加,生长轮变化不明显;木材中大部分组成分子的数量特征,除导管频率有降低趋势外均与纬度成正相关。评述了年降雨量对蓝桉木材结构的影响  相似文献   

15.
Wood anatomy of Eucalyptus globulus Labill. under different habitats was comparatively studied under light and scanning electron microscope. According to the eleven major quantitative perimeters of wood characteristics of E. globulus viz: vessel frequency, percentage of solitary vessels, vessel diameter, vessel member length; tracheid length and diameter; fibre tracheid length and diameter; libriform fibre length; ray frequency and ray height, the plants under different habitats have been made a comparison. The results showed that growth ring was indistinct, and there was a positive correlation between the quantitative characters of most wood constituent members were positively correlated with the latitude except for some of vessel frequency decreased. The decrease in effects of annual rainfall on the structure of the wood of E. glotrulus were evaluated.  相似文献   

16.
ObjectivesJust as people with the same weight can have different body builds, woods with the same wood density can have different anatomies. Here, our aim was to assess the magnitude of anatomical variation within a restricted range of wood density and explore its potential ecological implications.MethodsTwig wood of 69 angiosperm tree and shrub species was analyzed. Species were selected so that wood density varied within a relatively narrow range (0.38–0.62 g cm-3). Anatomical traits quantified included wood tissue fractions (fibres, axial parenchyma, ray parenchyma, vessels, and conduits with maximum lumen diameter below 15 μm), vessel properties, and pith area. To search for potential ecological correlates of anatomical variation the species were sampled across rainfall and temperature contrasts, and several other ecologically-relevant traits were measured (plant height, leaf area to sapwood area ratio, and modulus of elasticity).ResultsDespite the limited range in wood density, substantial anatomical variation was observed. Total parenchyma fraction varied from 0.12 to 0.66 and fibre fraction from 0.20 to 0.74, and these two traits were strongly inversely correlated (r = -0.86, P < 0.001). Parenchyma was weakly (0.24 |r|≤ 0.35, P < 0.05) or not associated with vessel properties nor with height, leaf area to sapwood area ratio, and modulus of elasticity (0.24 |r|≤ 0.41, P < 0.05). However, vessel traits were fairly well correlated with height and leaf area to sapwood area ratio (0.47 |r|≤ 0.65, all P < 0.001). Modulus of elasticity was mainly driven by fibre wall plus vessel wall fraction rather than by the parenchyma component.ConclusionsOverall, there seem to be at least three axes of variation in xylem, substantially independent of each other: a wood density spectrum, a fibre-parenchyma spectrum, and a vessel area spectrum. The fibre-parenchyma spectrum does not yet have any clear or convincing ecological interpretation.  相似文献   

17.
The general wood structure, vessel size and distribution along the stem xylem radius and in petioles were studied in Laurus azorica trees living in a Tenerife laurel forest. The fractions of volume occupied by dry matter, water and air in percentage of wood fresh volume were also studied. The wood showed a diffuse-porous structure, with solitary vessels or vessels somewhat clustered in small radially oriented groups. Vessels had a diameter ranging from 20 to 130 µm. This diameter was minimal close to the pith, increased more than 2-fold with age, and reached its maximum width close to the cambium. Vessel density decreased from 36 vessels mm-2 near the pith to about 13 vessels mm-2 near the cambium. Accordingly, the lumen area was small in young xylem close to the pith (0.0015 mm2), reaching a value 5 times larger (0.007 mm2) near the cambium than in the centre of the stem. Lumen area of vessels in petioles was about 1.5% of petiole cross-sectional area and thus much lower than in stems. Mean hydraulic diameter of these vessels was about 20 µm, and mean vessel density about 136 per petiole. There were only small differences in proportions of dry matter, water and air along stem radius. The relevance of each one of these fractions in the wood is discussed as evidence of the possible existence of a number of embolized vessels dispersed in the total functional cross-sectional area of the xylem.  相似文献   

18.
Wood density and vessel characteristics are functionally interrelated, yet they may have distinct ecological associations. In a comparative study of 51 angiosperm species ranging from chaparral shrubs to riparian trees, we examined relationships among wood density and vessel traits and their ecological correlates. Mean vessel lumen area and vessel density (number mm(-2)) varied widely (7- to 10-fold). In multivariate analyses, both vessel traits were negatively correlated with wood density, which varied more narrowly (< 2-fold). Vessel density and lumen area were inversely related across species, allowing a broad range of vessel traits within a narrow range of wood density. Phylogenetic independent contrasts indicated correlated inverse evolutionary change in vessel traits. Each trait had a distinct pattern of ecological correlation -- wood density was most strongly associated with soil water, and vessel traits showed contrasting relationships with plant height. Within a narrow range of wood density, there was significant variation in vessel traits. Given their particular ecological associations, the results suggest that wood density and vessel traits describe two distinct ecological axes.  相似文献   

19.
Seasonal development of phloem in scots pine stems   总被引:2,自引:0,他引:2  
The formation of phloem was studied for two years in stems of 50 to 60 year old trees of Scots pine (Pinus sylvestris L.) growing in nature. The development of phloem of the current year begins 10 to 20 days before the xylem formation and is completed with the termination of shoot growth in the end of June. Observations over the seasonal activity of cambium producing sieve cells of phloem and duration of their differentiation as compared to the xylem derivatives of cambium have shown that the maxima of formation of phloem and xylem cells could coincide or not coincide by season, while the activities of their differentiation were always in antiphase. The sieve cells of early phloem were separated from those of late phloem by a layer of tannin-containing cells, which are formed simultaneously with the formation of late xylem cells by the cambium. Seasonal dynamics of accumulation of starch grain in structural elements of the phloem is related to the xylem development. The content of metabolites in differentiating and mature phloem elements, in the cambium zone, and in the xylem cells growing in the radial direction depended on cell specificity, stage of their development, and type of forming wood, early or late, which differ in the cell wall parameters and, hence, requirement of assimilates. Significant differences were described between the content of low molecular weigh carbohydrates, amino acids, organic acids, and phenol compounds using two methods of calculation: per dry weight and per cell.  相似文献   

20.
不同纬度对鹅掌楸次生木质部结构的影响   总被引:3,自引:0,他引:3  
对生长在北纬23至32度的鹅掌楸(Liriodendron chinense Sarg.)的次生木质部进行了比较解剖学研究。观察的特征有:导管分子的长度、直径、壁厚、梯状穿孔板横闩的数目;导管密度、纤维长度、直径、壁厚;射线的高度、宽度,单列射线的比例,射线的密度等。结果表明,随着纬度的增加,管分子变短变细,壁变薄,梯状穿孔板的横闩数目减少;纤维也变短变线,壁变薄;木射线变敌变窄,单列射线的比例和射线密度增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号