首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The possible association between gonadal protein divergence and postzygotic reproductive isolation was investigated among species of the Drosophila melanogaster and D. virilis groups. Protein divergence was scored by high-resolution two-dimensional electrophoresis (2DE). Close to 500 protein spots from gonadal tissues (testis and ovary) and nongonadal tissues (malpighian tubules and brain) were analyzed and protein divergence was calculated based on presence vs absence. Both testis and ovary proteins showed higher divergence than nongonadal proteins, and also a highly significant positive correlation with postzygotic reproductive isolation but a weaker correlation with prezygotic reproductive isolation. Particularly, a positive and significant correlation was found between proteins expressed in the testis and postzygotic reproductive isolation among closely related species such as the within-phylad species in the D. virilis group. The high levels of male-reproductive-tract protein divergence between species might be associated with F1 hybrid male sterility among closely related species. If so, a lower level of ovary protein divergence should be expected on the basis that F1 female hybrids are fully fertile. However, this is not necessarily true if relatively few genes are responsible for the reproductive isolation observed between closely related species, as recent studies seem to suggest. We suggest that the faster rate of evolution of gonadal proteins in comparison to nongonadal proteins and the association of that rate with postzygotic reproductive isolation may be the result of episodic and/or sexual selection on male and female molecular traits. Correspondence to: A. Civetta  相似文献   

2.
Transfer RNAs of Escherichia coli were separated by two-dimensional polyacrylamide gel electrophoresis, and the relative abundance of each of the 26 known tRNAs thus separated was measured on the basis of molecular numbers in cells. Based on this relative abundance, the distributions of cognate codons in E. coli genes (lacI, rpA, asnA, recA, lpp and four ribosomal protein genes) and in coliphage (MS2, φX174 and λ) genes were examined. A strong positive correlation between the tRNA abundance and the choice of codons, among both synonymous codons and those corresponding to different amino acids, was found for all E. coli protein genes that had been sequenced completely. However, the correlation was less significant for the phage genes. The relationship between tRNA abundance and its usage (namely anticodon usage) was examined by regression analysis. The degree of the relationship found for individual E. coli genes differed from gene to gene: those of r-protein genes and recA were higher than those of trpA, lacI and asnA. The dependent relationship of tRNA usage on its content for the first two genes seems to be greater than that expected from the proportional relationship between the two variables; i.e. these genes selectively use codons corresponding to major tRNAs but nearly avoid using those of minor tRNAs.  相似文献   

3.
In animals, most α-amylases are chloride-dependent enzymes. A chloride ion is required for allosteric activation and is coordinated by one asparagine and two arginine side chains. Whereas the asparagine and one arginine are strictly conserved, the main chloride binding arginine is replaced by a glutamine in some rare instances, resulting in the loss of chloride binding and activation. Amyrel is a distant paralogue of α-amylase in Diptera, which was not characterized biochemically to date. Amyrel shows both substitutions depending on the species. In Drosophila melanogaster, an arginine is present in the sequence but in Drosophila virilis, a glutamine occurs at this position. We have investigated basic enzymological parameters and the dependence to chloride of Amyrel of both species, produced in yeast, and in mutants substituting arginine to glutamine or glutamine to arginine. We found that the amylolytic activity of Amyrel is about thirty times weaker than the classical Drosophila α-amylase, and that the substitution of the arginine by a glutamine in D. melanogaster suppressed the chloride-dependence but was detrimental to activity. In contrast, changing the glutamine into an arginine rendered D. virilis Amyrel chloride-dependent, and interestingly, significantly increased its catalytic efficiency. These results show that the chloride ion is not mandatory for Amyrel but stimulates the reaction rate. The possible phylogenetic origin of the arginine/glutamine substitution is also discussed.  相似文献   

4.
Restriction fragment length polymorphism (RFLP) analysis has been used to evaluate mitochondrial DNA (mtDNA) variation in 12 sibling species forming the Drosophila virilis species group. The variation thresholds corresponding to the interspecific and interstrain levels have been determined. The results indicate that interspecific hybridization has significantly contributed to the evolutionary history of the virilis species group.  相似文献   

5.
Satellite DNA sequences in Drosophila virilis   总被引:24,自引:0,他引:24  
  相似文献   

6.
DNA sequence divergence was analyzed in some sibling species of the Drosophila virilis group. Clones comprising about 0.1% of the genome DNA were selected at random from a D. virilis library for a comparative study on DNA from D. lummei, D. novamexicana, D. borealis, and D. lacicola. Blot hybridization experiments indicated that about 70% of DNA from D. lummei and D. novamexicana and less than 50% of DNA from D. borealis and D. lacicola share sequences that are homologous to DNA in D. virilis. This finding is in excellent agreement with the genealogical tree based on cytological studies (Throckmorton 1982). - Four plasmids with inserts which are present in one or a few copies per genome were hybridized in situ to polytene chromosomes. These experiments demonstrate that (1) homologous "unique" DNA sequences are localized exclusively in homologous bands and (2) homologous bands that appear to be identical in different species may contain different DNA sequences.  相似文献   

7.
Mitochondrial DNA (mtDNA) variants are widely used in evolutionary genetics as markers for population history and to estimate divergence times among taxa. Inferences of species history are generally based on phylogenetic comparisons, which assume that molecular evolution is clock-like. Between-species comparisons have also been used to estimate the mutation rate, using sites that are thought to evolve neutrally. We directly estimated the mtDNA mutation rate by scanning the mitochondrial genome of Drosophila melanogaster lines that had undergone approximately 200 generations of spontaneous mutation accumulation (MA). We detected a total of 28 point mutations and eight insertion-deletion (indel) mutations, yielding an estimate for the single-nucleotide mutation rate of 6.2 × 10−8 per site per fly generation. Most mutations were heteroplasmic within a line, and their frequency distribution suggests that the effective number of mitochondrial genomes transmitted per female per generation is about 30. We observed repeated occurrences of some indel mutations, suggesting that indel mutational hotspots are common. Among the point mutations, there is a large excess of G→A mutations on the major strand (the sense strand for the majority of mitochondrial genes). These mutations tend to occur at nonsynonymous sites of protein-coding genes, and they are expected to be deleterious, so do not become fixed between species. The overall mtDNA mutation rate per base pair per fly generation in Drosophila is estimated to be about 10× higher than the nuclear mutation rate, but the mitochondrial major strand G→A mutation rate is about 70× higher than the nuclear rate. Silent sites are substantially more strongly biased towards A and T than nonsynonymous sites, consistent with the extreme mutation bias towards A+T. Strand-asymmetric mutation bias, coupled with selection to maintain specific nonsynonymous bases, therefore provides an explanation for the extreme base composition of the mitochondrial genome of Drosophila.  相似文献   

8.
9.
In interspecific matings between the species Drosophila virilis and Drosophila texana, female sterility can be observed in F2 backcross females and in F2 hybrid females. The results presented in this report show that the female sterility, whenever it exists, is due to prevention of vitellogenin synthesis in the fat body, but other abnormalities such as defects with the hybrid ovaries are not excluded. The observation that sterility appears among females from backcrosses suggests that incompatibilities between interspecific genes may cause female sterility even in the presence of a complete habloid genome from one or the other species. Yet, the parallel observation that female sterility appears only in hybrid females with recombinant chromosomes indicates that sterility results when conspecific combinations of genes on the same chromosome are broken by interspecific recombination. © 1996 Wiley-Liss, Inc.  相似文献   

10.
In interspecific matings between Drosophila virilis and Drosophila texana female sterility is observed in F2 hybrid females. A previous study has shown that no vitellogenin synthesis occurs in the fat body of sterile hybrid females. The results presented in this paper show that hybrid ovaries of sterile females transplanted into the abdomens of females of the parental species are not able to develop upon maturity. With few exceptions, the hybrid ovaries remained alive in the host environment, but their oocytes failed to develop to vitellogenic stages. Thus, in hybrid females between Drosophila virilis and Drosophila texana sterility is the result of defects in both the two main developmental processes of egg maturation, the synthesis of vitellogenins in the fat body and the uptake of vitellogenins by the ovary. Dev Genet 20:47–52, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Although transposable elements (TEs) are known to be potent sources of mutation, their contribution to the generation of recent adaptive changes has never been systematically assessed. In this work, we conduct a genome-wide screen for adaptive TE insertions in Drosophila melanogaster that have taken place during or after the spread of this species out of Africa. We determine population frequencies of 902 of the 1,572 TEs in Release 3 of the D. melanogaster genome and identify a set of 13 putatively adaptive TEs. These 13 TEs increased in population frequency sharply after the spread out of Africa. We argue that many of these TEs are in fact adaptive by demonstrating that the regions flanking five of these TEs display signatures of partial selective sweeps. Furthermore, we show that eight out of the 13 putatively adaptive elements show population frequency heterogeneity consistent with these elements playing a role in adaptation to temperate climates. We conclude that TEs have contributed considerably to recent adaptive evolution (one TE-induced adaptation every 200-1,250 y). The majority of these adaptive insertions are likely to be involved in regulatory changes. Our results also suggest that TE-induced adaptations arise more often from standing variants than from new mutations. Such a high rate of TE-induced adaptation is inconsistent with the number of fixed TEs in the D. melanogaster genome, and we discuss possible explanations for this discrepancy.  相似文献   

12.
Summary Previous studies have demonstrated that the expression of the -amylase gene is repressed by dietary glucose in Drosophila melanogaster. Here, we show that the -amylase gene of a distantly related species, D. virilis, is also subject to glucose repression. Moreover, the cloned amylase gene of D. virilis is shown to be glucose repressible when it is transiently expressed in D. melanogaster larvae. This cross-species, functional conservation is mediated by a 330-bp promoter region of the D. virilis amylase gene. These results indicate that the promoter elements required for glucose repression are conserved between distantly related Drosophila species. A sequence comparison between the amylase genes of D. virilis and D. melanogaster shows that the promoter sequences diverge to a much greater degree than the coding sequences. The amylase promoters of the two species do, however, share small clusters of sequence similarity, suggesting that these conserved cis-acting elements are sufficient to control the glucose-regulated expression of the amylase gene in the genus Drosophila.Offprint requests to: D.A. Hickey  相似文献   

13.
Routtu J  Hoikkala A  Kankare M 《Hereditas》2007,144(5):213-221
Species of the D. virilis group are widely used in evolutionary research, but the individuals of different species are difficult to distinguish from each other morphologically. We constructed a fast and easy microsatellite-based identification method for the species of the group occurring sympatrically in northern Europe. The neighbor joining tree based on 14 microsatellite loci also gave a good resolution of the species divergence pattern in the whole group.  相似文献   

14.
The satellite bands of the DNA of Drosophila virilis   总被引:2,自引:1,他引:1  
Purified DNA has been prepared from Drosophila virilis using a modification of the method derived for bacteria (Marmur, 1961). Some physical properties have been examined, a new hidden satellite discovered, and a difference found in the satellite banding pattern of different tissues. — In addition to the three satellite bands lighter than the main band previously reported (Gall et al., 1970), a new satellite heavier than the main band has been detected after thermal denaturation of the DNA (which substantially shifts the buoyant density of the main band but not that of the satellites indicating that all are fast-annealing). The satellite pattern of DNA extracted from heads alone differed from that of the entire animals: the amount of satellite I was decreased and II increased; III was unaffected; IV was increased relative to the amount in the main band. The total content of satellite material in the heads (assumed to be entirely diploid) was 42%, the highest amount reported for any organism. — Thermal transitions were determined for the DNA from adults and larvae. After preparative CsCl density gradient fractionation of adult DNA, two sets of bimodal thermal curves were obtained (in SSC) with agreement between the initial position in the preparative gradient, the thermal transitions, and the G+C content from density except for satellite III for which the Tm gave a more accurate G+C amount. DNA from satellites I and II together generated a Tm of 81.2° which was similar to a calculated Tm of 81.9° making the naive assumption that the thermal components of the two satellites would interact in a simple additive fashion. A Tm of 71.9° was ascribed to satellite III which indicates that it is not the equivalent of the poly (A-T) band found at the same density in D. melanogaster (Fansler et al., 1970). The calculated overall base composition from the density equivalents (using the value for satellite III from thermal data) gave an expected G+C content of 36.6%. The measured value was 36.0%. The possible significance of the differential satellite pattern has been discussed.  相似文献   

15.
Comparisons of polymorphism patterns between distantly related species are essential in order to determine their generality. However, most work on the genus Drosophila has been done only with species of the subgenus Sophophora. In the present work, we have sequenced one intron and surrounding coding sequences of 6 X-linked genes (chorion protein s36, elav, fused, runt, suppressor of sable and zeste) from 21 strains of wild-type Drosophila virilis (subgenus Drosophila). From these data, we have estimated the average level of DNA polymorphism, inferred the effective population size and population structure of this species, and compared the results with those obtained for other Drosophila species. There is no reduction in variation at two loci close to the centromeric heterochromatin, in contrast to Drosophila melanogaster.  相似文献   

16.
Male meiosis in D. melanogaster cytologically follows the usual pattern, whereas in D. melanogaster and in D. virilis oocytes the chromosomes clump into a karyosphere at early meiotic prophase and remain so up to metaphase I.Male meiosis in D. virilis spermatocytes has an intermediate character: a part of the chromatin clumps together in a karyosphere at early prophase, whereas the other part of the chromatin remains diffuse all through prophase. At the end of prophase, the diffuse chromatin becomes integrated into the karyosphere before metaphase I. During the meiotic divisions the chromosomes have the same clumped aspect as those in Drosophila oocytes and thus differ strikingly from the dividing chromosomes in D. melanogaster spermatocytes.In D. virilis spermatocytes the nucleolus exhibits changes during the meiotic prophase that may be related to synthetical activities. The DNA specific staining with the fluorochrome DAPI reveals the existence of extrachromosomal DNA in the later prophase. Other striking differences in meiotic events between the two Drosophila species concern the centrioles and spermiogenesis.  相似文献   

17.
Telomere elongation by telomerase is the most widespread mechanism among eukaryotes. However, alternative mechanisms such as homologous recombination between terminal satellite DNAs are probably used in lower dipteran insects and in some plants. Drosophila melanogaster uses the very unusual telomere elongation pathway of transposition of telomere-specific retrotransposable elements. The uniqueness of this telomere elongation mechanism raises the question of its origin. We, therefore, analyzed sequences located at telomeres of fairly distantly related Drosophila species, and in this paper we describe the characterization of complex satellite DNA sequences located at the telomeres of D. virilis and other species in the virilis group. We suggest an involvement of these DNA satellites in telomere elongation by homologous recombination similar to that found in lower dipterans. Our findings raise the possibility that telomere elongation by specific retrotransposons as found in D. melanogaster and its sibling species is a recent event in the evolution of dipteran insects.  相似文献   

18.
Aggregation pheromones in five taxa of the Drosophila virilis species group   总被引:2,自引:0,他引:2  
ABSTRACT. Aggregation pheromones have been demonstrated in the closely related taxa: Drosophila americana americana Spencer, D. a. texana Patterson, D. novamexicana Patterson, and D. lummei Hackman. These pheromones function much as has been reported previously for D. virilis Sturtevant. The compounds are produced by sexually mature males, but both sexes respond in a wind-tunnel olfactometer. In all species except D. lummei , a 21-carbon alkene is an important pheromone component. In D. virilis the hydrocarbon is (Z)-10-heneicosene (Z10–21), but in D. a. americana, D. a. texana and D. novamexicana it is (Z)-9-heneicosene (Z9-21). All these taxa respond best to the heneicosene which they produce. D. lummei possesses no heneicosenes but, curiously, responds well to both Z9-21 and Z10-21. All species possess five male-specific esters which were previously discovered in D. virilis : methyl tiglate, ethyl tiglate, isopropyl tiglate, methyl hexanoate and ethyl hexanoate. Ethyl tiglate is the most abundant in each case. Responses to the esters vary among the taxa, ranging from highly significant in D. lummei , particularly to ethyl tiglate, to not demonstrable in D. a. americana. Variability in ester response has also been demonstrated between two strains of D. virilis. In all cases the crude male-derived pheromone is synergistic with an extract of fermented willow bark, on which oviposition is said to occur.  相似文献   

19.
《Genetics》2010,185(4):1519-1534
The distal arm of the fourth (“dot”) chromosome of Drosophila melanogaster is unusual in that it exhibits an amalgamation of heterochromatic properties (e.g., dense packaging, late replication) and euchromatic properties (e.g., gene density similar to euchromatic domains, replication during polytenization). To examine the evolution of this unusual domain, we undertook a comparative study by generating high-quality sequence data and manually curating gene models for the dot chromosome of D. virilis (Tucson strain 15010–1051.88). Our analysis shows that the dot chromosomes of D. melanogaster and D. virilis have higher repeat density, larger gene size, lower codon bias, and a higher rate of gene rearrangement compared to a reference euchromatic domain. Analysis of eight “wanderer” genes (present in a euchromatic chromosome arm in one species and on the dot chromosome in the other) shows that their characteristics are similar to other genes in the same domain, which suggests that these characteristics are features of the domain and are not required for these genes to function. Comparison of this strain of D. virilis with the strain sequenced by the Drosophila 12 Genomes Consortium (Tucson strain 15010–1051.87) indicates that most genes on the dot are under weak purifying selection. Collectively, despite the heterochromatin-like properties of this domain, genes on the dot evolve to maintain function while being responsive to changes in their local environment.EUKARYOTIC genomes are packaged into two major types of chromatin: euchromatin is gene rich and has a diffuse appearance during interphase, while heterochromatin is gene poor and remains densely packaged throughout the cell cycle (Grewal and Elgin 2002). The distal 1.2 Mb of the fourth chromosome of Drosophila melanogaster, known as the dot chromosome or Muller F element, is unusual in exhibiting an amalgamation of heterochromatic and euchromatic properties. This domain has a gene density that is similar to the other autosomes (Bartolomé et al. 2002; Slawson et al. 2006). However, it appears heterochromatic by many criteria, including late replication and very low levels of meiotic recombination (Wang et al. 2002; Arguello et al. 2010). It exhibits high levels of association with heterochromatin protein 1 (HP1) and histone H3 di- and trimethylated at lysine 9 (H3K9me2/3), as shown by immunofluorescent staining of the polytene chromosomes (Riddle and Elgin 2006; Slawson et al. 2006). This association with heterochromatin marks has recently been confirmed by the modENCODE Project [N. C. Riddle, A. Minoda, P. V. Kharchenko, A. A. Alekseyenko, Y. B. Schwartz, M. Y. Tolstorukov, A. A. Gorchakov, C. Kennedy, D. Linder-Basso, J. D. Jaffe, G. Shanower, M. I. Kuroda, V. Pirrotta, P. J. Park, S. C. R. Elgin, G. H. Karpen, and the modENCODE Consortium (http://www.modencode.org), unpublished results]. To understand this unique domain and to examine the evolution of a region with very low levels of recombination, we have undertaken a comparative study using the dot chromosome of D. virilis, a species that diverged from D. melanogaster 40–60 million years ago (Powell and Desalle 1995). We sequenced and improved the assembly of the D. virilis dot chromosome and created a manually curated set of gene models to ensure that both the assembly and the gene annotations are at a quality comparable to those in D. melanogaster. We then compared the sequence organization and gene characteristics of the distal portion of the D. virilis dot chromosome with the corresponding region from the D. melanogaster dot chromosome.In addition to examining the long-term dot chromosome evolution, we also investigated the short-term dot chromosome evolution by comparing the genomic sequences from two different strains of D. virilis. Agencourt Biosciences (AB) has previously produced a whole genome shotgun assembly of Tucson strain 15010–1051.87, while we have sequenced Tucson strain 15010–1051.88 of D. virilis [the Genomics Education Partnership (GEP) assembly]. The AB assembly has been improved by the Drosophila 12 Genomes Consortium and released as part of the comparative analysis freeze 1 (CAF1) assembly (Drosophila 12 Genomes Consortium et al. 2007).Using the GEP and CAF1 assemblies from D. virilis, and the high-quality D. melanogaster assembly and its gene annotations from FlyBase (Crosby et al. 2007), we compared the gene properties and sequence organization of the dot chromosomes and reference euchromatic and heterochromatic domains. The dot chromosomes from D. melanogaster and D. virilis are distinct from the heterochromatic and euchromatic regions of the two genomes, both in organization (e.g., repeat density) and in characteristics of the genes (e.g., size, codon bias). The two dot chromosomes resemble each other by most criteria and differ only in the types of repetitive sequences present and in relative gene order and orientation. Despite the very low rate of meiotic recombination, comparison of the two D. virilis strains shows that dot chromosome genes are under weak purifying selection. Our analysis of genes that are present in a euchromatic chromosome arm in one species and on the dot chromosome in the other (the “wanderer” genes) shows that this set of genes evolves to maintain function while responding to the changes in the local chromosomal environment.  相似文献   

20.
  • 1.1. Chemical structures were determined for the cuticular alkanes, alkenes, and certain of the alkadienes for 11 D. virilis group species.
  • 2.2. Male-specific hydrocarbons occurred in five species: these were 9-heneicosene in D. americana and D. novamexicana, 10-heneicosene in D. virilis, 5,13- and 5,15-pentacosadienes in D. kanekoi, and 9-pentacosene in one strain of D. lummei.
  • 3.3. Hydrocarbon profiles of newly emerged flies always differed from mature files.
  • 4.4. Relationships among the species, with respect to hydrocarbon profiles, were investigated by cluster analysis.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号