首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Allograft inflammatory factor-1 (AIF-1) is expressed by macrophages, fibroblasts, endothelial cells and smooth muscle cells in immune-inflammatory disorders such as systemic sclerosis, rheumatoid arthritis and several vasculopathies. However, its molecular function is not fully understood. In this study, we examined gene expression profiles and induction of chemokines in monocytes treated with recombinant human AIF (rhAIF-1). Using the high-density oligonucleotide microarray technique, we compared mRNA expression profiles of rhAIF-1-stimulated CD14+ peripheral blood mononuclear cells (CD14+ PBMCs) derived from healthy volunteers. We demonstrated upregulation of genes for several CC chemokines such as CCL1, CCL2, CCL3, CCL7, and CCL20. Next, using ELISAs, we confirmed that rhAIF-1 promoted the secretion of CCL3/MIP-1α and IL-6 by CD14+ PBMCs, whereas only small amounts of CCL1, CCL2/MCP-1, CCL7/MCP-3 and CCL20/MIP-3α were secreted. Conditioned media from rhAIF-1stimulated CD14+ PBMCs resulted in migration of PBMCs. These findings suggest that AIF-1, which induced chemokines and enhanced chemotaxis of monocytes, may represent a molecular target for the therapy of immune-inflammatory disorders.  相似文献   

2.
3.
Ma WL  Ye H  Tao XN  Xin JB 《生理学报》2005,57(4):493-497
为了探讨FIZZ1(found in inflammatory zone 1)在肺纤维化发病中的作用,应用博莱霉素(5mg/kg体重)气管内注入复制实聆性人鼠肺纤维化模犁,采用HE染色、Masson三联染色、羟脯氨酸含量测定、免疫组织化学染色、原位杂交等方法,观察实验性人鼠肺纤维化的发病过程及其肺组织中FIZZ1蛋白、mRNA表达水平的动态变化。结果显示:(1)实验性人鼠肺纤维化发病过程中,呈现舆型的肺泡炎(7d)、纤维组织增生(14~2ld)及稳定的肺纤维化(28d)等表现;(2)FIZZ1蛋白在正常肺组织表达较弱,存肺纤维化组7d时表达明显增强,14d时较7d时有所减弱,21及28d明显减弱;(3)FIZZ1 mRNA在正常肺组织巾表达较弱,在肺纤维化组7d时表达明显增强,14d时开始减弱,2l及28d明显减弱,但仍强于正常组。上述结果提示,FIZZ1蛋白和mRNA在实验性大鼠肺纤维化发病过程中呈现明显的动态变化,并可能参与了肺纤维化的发生。  相似文献   

4.
This review highlights an emerging role for sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) in many different types of fibrosis. Indeed, both LPA and S1P are involved in the multi-process pathogenesis of fibrosis, being implicated in promoting the well-established process of differentiation of fibroblasts to myofibroblasts and the more controversial epithelial–mesenchymal transition and homing of fibrocytes to fibrotic lesions. Therefore, targeting the production of these bioactive lysolipids or blocking their sites/mechanisms of action has therapeutic potential. Indeed, LPA receptor 1 (LPA1) selective antagonists are currently being developed for the treatment of fibrosis of the lung as well as a neutralising anti-S1P antibody that is currently in Phase 1 clinical trials for treatment of age related macular degeneration. Thus, LPA- and S1P-directed therapeutics may not be too far from the clinic. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

5.
Neuropeptide Y (NPY) has been reported to be a potent anti-inflammatory peptide with ability to directly modulate activity of granulocytes and macrophages. The present study aimed to correlate the effects of NPY in vivo on lipopolysaccharide-induced air-pouch exudates cells and in vitro on peripheral blood leukocytes functions. The role of different Y receptors was examined using NPY-related peptides and antagonists with diverse subtype specificity and selectivity for Y receptors. Y1, Y2 and Y5 receptors were detected on air-pouch exudates cells (flow cytometry) and peripheral blood granulocytes (immunocitochemistry). NPY in vivo reduced inflammatory cells accumulation into the air pouch, and decreased their adherence and phagocytic capacity via Y2/Y5 and Y1/Y2 receptors, respectively. Quite the opposite, NPY in vitro potentiated adhesiveness and phagocytosis of peripheral blood granulocytes and monocytes by activating Y1 receptor. The differences between in vivo and in vitro effects of NPY on rat inflammatory cells functions are mostly due to dipeptidyl peptidase 4 activity. In addition, suppressive effect of NPY in vivo is highly dependent on the local microenvironment, peptide truncation and specific Y receptors interplay.  相似文献   

6.
Reactive oxygen species (ROS) are involved in numerous physiological and pathophysiological responses. Increasing evidence implicates ROS as signaling molecules involved in the propagation of cellular pathways. The NADPH oxidase (Nox) family of enzymes is a major source of ROS in the cell and has been related to the progression of many diseases and even environmental toxicity. The complexity of this family's effects on cellular processes stems from the fact that there are seven members, each with unique tissue distribution, cellular localization, and expression. Nox proteins also differ in activation mechanisms and the major ROS detected as their product. To add to this complexity, mounting evidence suggests that other cellular oxidases or their products may be involved in Nox regulation. The overall redox and metabolic status of the cell, specifically the mitochondria, also has implications on ROS signaling. Signaling of such molecules as electrophilic fatty acids has an impact on many redox-sensitive pathologies and thus, as anti-inflammatory molecules, contributes to the complexity of ROS regulation. This review is based on the proceedings of a recent international Oxidase Signaling Symposium at the University of Pittsburgh's Vascular Medicine Institute and Department of Pharmacology and Chemical Biology and encompasses further interaction and discussion among the presenters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号