首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a detailed theoretical analysis of the Förster energy transfer process when a pair of molecules (donor and acceptor) is located nearby a cluster of two metallic nanospheres (dimer). We consider the case in which plasmonic resonances are within the overlap between the donor emission and acceptor absorption spectra, as well as the case that excludes such resonances from the aforementioned spectral overlap. Moreover, we explore the dependence of the Förster energy transfer rate on different dimer configurations (size and separation of nanospheres) and several dipole orientations of molecules. The dimer perturbs strongly the Förster energy transfer rate when plasmons are excited, donor dipole is oriented along the longitudinal axis of the dimer, and the radii of nanospheres and the sphere-gap distance are on the order of a few nanometers. In case of plasmonic excitation, the Förster energy transfer rate is degraded as the sphere-gap distance and size of the nanoparticles increase due to the dephasing of electronic motion arising from ohmic losses of metal. Also, we study the Förster efficiency influenced by the dimer, finding that the high efficiency region (delimited by the Förster radius curve) is reduced as a consequence of significant enhancement of the direct donor decay rate. Our study could impact applications that involve Förster energy transfer.  相似文献   

2.
Methodological aspects of modeling of the energy transfers in plant antenna complexes are considered using the combined Förster-Redfield theory. We analyze the advantages of this approach as well as some questionable points, including the choice of a critical value of the exciton coupling (corresponding to the boundary between the Redfield and Förster limits), a spread of the transfer rates induced by energetic disorder, and the accuracy of the theory for the couplings near the critical value.  相似文献   

3.
The problem of singlet excitation kinetics and dynamics, especially at high excitation intensities, among a small number of chromophores of a given system has been addressed. A specific scheme for the kinetics is suggested and applied to CPII, a small chlorophyll (Chl)a/b antenna complex the fluorescence lifetime of which has been reported to be independent of excitation intensity over a wide intensity range of picosecond pulses. We have modeled the kinetics from the point of view that Chla molecules in CPII are Förster coupled so that a second excitation received by the group of Chla's either creates a state with two localized excitons or raises the first one to a doubly excited state. The data on CPII can be understood on the basis of a kinetic model that does not exclude exciton annihilation during the excitation pulse. The implied annihilation rate is consistent with our theoretical estimates of that rate obtained by applying excitation transfer theory to pairs of molecules both initially excited.  相似文献   

4.
Konrad Colbow  R.P. Danyluk 《BBA》1976,440(1):107-121
A theoretical model is presented to account for the physical mechanism of energy transfer from antenna molecules to the reaction centers in photosynthesis. The energy transfer is described by a generalized transport equation or “master equation”. The solution of this equation for the proposed model gives a relationship between the antennae interaction energy and the transfer rate. The results are shown to be in agreement with inter-antenna transfer rates calculated from experimental fluorescence lifetimes. Previous theories were based either on the Förster mechanism, which is valid for very small interaction energies, or an exciton model valid for very large interactions, but experimental results seemed to indicate that the actual situation was intermediate between these two. The Förster theory and the exciton model are limiting cases of the master equation.  相似文献   

5.
The peripheral light-harvesting antenna complex (LH2) of purple photosynthetic bacteria is an ideal testing ground for models of structure–function relationships due to its well-determined molecular structure and ultrafast energy deactivation. It has been the target for numerous studies in both theory and ultrafast spectroscopy; nevertheless, certain aspects of the convoluted relaxation network of LH2 lack a satisfactory explanation by conventional theories. For example, the initial carotenoid-to-bacteriochlorophyll energy transfer step necessary on visible light excitation was long considered to follow the Förster mechanism, even though transfer times as short as 40 femtoseconds (fs) have been observed. Such transfer times are hard to accommodate by Förster theory, as the moderate coupling strengths found in LH2 suggest much slower transfer within this framework. In this study, we investigate LH2 from Phaeospirillum (Ph.) molischianum in two types of transient absorption experiments—with narrowband pump and white-light probe resulting in 100 fs time resolution, and with degenerate broadband 10 fs pump and probe pulses. With regard to the split Qx band in this system, we show that vibronically mediated transfer explains both the ultrafast carotenoid-to-B850 transfer, and the almost complete lack of transfer to B800. These results are beyond Förster theory, which predicts an almost equal partition between the two channels.  相似文献   

6.
Optically detected magnetic resonance of chlorosome-containing membranes from the green filamentous bacterium Chloroflexus aurantiacus has been performed both by fluorescence and absorption detection. Triplet states localized in the chlorosomes and in the B808–866 complex have been characterized. After chemical reduction with ascorbate followed by illumination at 200 K, recombination triplet state localized in the primary donor becomes largely populated under illumination at low temperature while all the antenna triplet states, which are localized in carotenoids and BChl a molecules, are strongly quenched. We were able to obtain the T-S spectrum of the primary donor P870 surrounded by all the antenna complexes connected to the RC via energy transfer and then in its intact environment. We found clear spectroscopic evidence for exciton interaction between the RC and the B808–866 antenna complex. This evidence was provided by the comparison of the T–S spectrum of P870 in the membranes with that of isolated RC. The analogy of some features of the difference spectra with those previously found in the same kind of experiments for Rb. sphaeroides, allows to predict a similar coupling among the primary donor and the nearby antenna BChl a molecules, assembled as circular aggregate.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

7.
The spectral forms of the two chlorophyll species in higher plant Photosystem II antenna proteins have been experimentally determined within their protein environment. Recombinant CP29 and LHC II antenna proteins missing individual chromophores were obtained by over-expression in bacteria without any changing of the primary protein sequence and in vitro reconstitution. Difference absorption spectroscopy with respect to the corresponding proteins binding the complete pigment complement yielded the spectral shape and extinction of single chlorophyll a and b. A functional relation of their absorption was given by Gaussian subband decomposition covering the entire Qx and Qy optical region together with the absolute value of the molar extinction coefficient. With respect to analogous determinations reported in the literature for organic solvents, this information is valuable for further understanding the in-protein chlorophyll excited states and excited state dynamics: in particular, for the calculation of Förster transfer rates by means of chlorophyll–chlorophyll overlap integral employing the Stepanov relation for emission and single chromophore transition energies according to the results of mutational analysis of chlorophyll binding sites [Bassi et al. (1999) Proc Natl Acad Sci USA 96: 10056–10061; Remelli et al. (1999) J Biol Chem 274: 33510–33521].  相似文献   

8.
John Whitmarsh  R.P. Levine 《BBA》1974,368(2):199-213
We have investigated the process of intermolecular excitation energy transfer and the relative orientation of the chlorophyll molecules in the unicellular green alga Chlamydomonas reinhardi. The principal experiments involved in vivo measurements of the fluorescence polarization as a function of the exciting-light wavelength in the presence and in the absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. We found that as the fluorescence lifetime increases upon the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea that the degree of fluorescence polarization decreases over the excitation region from 600 to 660 nm. This result, we argue, implies that a Förster mechanism of excitation energy transfer is involved for Photosystem II chlorophyll molecules absorbing primarily below 660 nm. We must add that our results do not exclude the possibility of a delocalized transfer process from being involved as well. Fluorescence polarization measurements using chloroplast fragments are also discussed in terms of a Förster transfer mechanism. As the excitation wavelength approaches 670 nm the fluorescence polarization is nearly constant upon the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea.Experiments performed using either vertically or horizontally polarized exciting light show that the fluorescence polarization increases as the exciting light wavelength increases from 650 to 673 nm. This suggests the possibility that chlorophyll molecules absorbing at longer wavelengths have a higher degree of relative order. Furthermore, these studies imply that chlorophyll molecules exist in discrete groups that are characterized by different absorption maxima and by different degrees of the fluorescence polarization. In view of these results we discuss different models for the Photosystem II antenna system and energy transfer between different groups of optically distinguishable chlorophyll molecules.  相似文献   

9.
Best RB  Mittal J 《Proteins》2011,79(4):1318-1328
Although it is now possible to fold peptides and miniproteins in molecular dynamics simulations, it is well appreciated that force fields are not all transferable to different proteins. Here, we investigate the influence of the protein force field and the solvent model on the folding energy landscape of a prototypical two‐state folder, the GB1 hairpin. We use extensive replica‐exchange molecular dynamics simulations to characterize the free‐energy surface as a function of temperature. Most of these force fields appear similar at a global level, giving a fraction folded at 300 K between 0.2 and 0.8 in all cases, which is a difference in stability of 2.8 kT, and are generally consistent with experimental data at this temperature. The most significant differences appear in the unfolded state, where there are different residual secondary structures which are populated, and the overall dimensions of the unfolded states, which in most of the force fields are too collapsed relative to experimental Förster Resonance Energy Transfer (FRET) data. Proteins 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
11.
Silver nanoparticles (Ag NPs) of different sizes have been prepared by Lee and Meisel’s method using trisodium citrate as reducing agent under ultra sonication. Optical absorption and fluorescence emission techniques were employed to investigate the interaction of 1,4-dihydroxy-2,3-dimethyl anthracene-9,10-dione (DHDMAD) with silver nanoparticles. In fluorescence spectroscopic study, we used the DHDMAD and Ag NPs as component molecules for construction of Förster Resonance Energy Transfer (FRET), whereas DHDMAD serve as donor and Ag NPs as acceptor. The surface plasmon resonance (SPR) peak of the prepared silver colloidal solution was observed from 419 nm to 437 nm. The synthesized silver nanoparticles at different heating time intervals were spherical in shape about the size of 25 nm and 55 nm. The fluorescence interaction between silver nanoparticles and DHDMAD confirms the FRET mechanism. According to Förster theory, the distance between silver nanoparticles and DHDMAD and the critical energy transfer distance were calculated and it is increase with heating time.  相似文献   

12.
Monomers of amyloid-β (Aβ) protein are known to be disordered, but there is considerable controversy over the existence of residual or transient conformations that can potentially promote oligomerization and fibril formation. We employed single-molecule Förster resonance energy transfer (FRET) spectroscopy with site-specific dye labeling using an unnatural amino acid and molecular dynamics simulations to investigate conformations and dynamics of Aβ isoforms with 40 (Aβ40) and 42 residues (Aβ42). The FRET efficiency distributions of both proteins measured in phosphate-buffered saline at room temperature show a single peak with very similar FRET efficiencies, indicating there is apparently only one state. 2D FRET efficiency-donor lifetime analysis reveals, however, that there is a broad distribution of rapidly interconverting conformations. Using nanosecond fluorescence correlation spectroscopy, we measured the timescale of the fluctuations between these conformations to be ~35 ns, similar to that of disordered proteins. These results suggest that both Aβ40 and Aβ42 populate an ensemble of rapidly reconfiguring unfolded states, with no long-lived conformational state distinguishable from that of the disordered ensemble. To gain molecular-level insights into these observations, we performed molecular dynamics simulations with a force field optimized to describe disordered proteins. We find, as in experiments, that both peptides populate configurations consistent with random polymer chains, with the vast majority of conformations lacking significant secondary structure, giving rise to very similar ensemble-averaged FRET efficiencies.  相似文献   

13.
Cell migration is a complex process, requiring coordination of many subcellular processes including membrane protrusion, adhesion, and contractility. For efficient cell migration, cells must concurrently control both transmission of large forces through adhesion structures and translocation of the cell body via adhesion turnover. Although mechanical regulation of protein dynamics has been proposed to play a major role in force transmission during cell migration, the key proteins and their exact roles are not completely understood. Vinculin is an adhesion protein that mediates force-sensitive processes, such as adhesion assembly under cytoskeletal load. Here, we elucidate the mechanical regulation of vinculin dynamics. Specifically, we paired measurements of vinculin loads using a Förster resonance energy transfer-based tension sensor and vinculin dynamics using fluorescence recovery after photobleaching to measure force-sensitive protein dynamics in living cells. We find that vinculin adopts a variety of mechanical states at adhesions, and the relationship between vinculin load and vinculin dynamics can be altered by the inhibition of vinculin binding to talin or actin or reduction of cytoskeletal contractility. Furthermore, the force-stabilized state of vinculin required for the stabilization of membrane protrusions is unnecessary for random migration, but is required for directional migration along a substrate-bound cue. These data show that the force-sensitive dynamics of vinculin impact force transmission and enable the mechanical integration of subcellular processes. These results suggest that the regulation of force-sensitive protein dynamics may have an underappreciated role in many cellular processes.  相似文献   

14.
Molecular dynamics simulations are combined with density functional theory calculations to evaluate the impact of static and dynamic disorders on the energy distribution of charge‐transfer (CT) states at donor–acceptor heterojunctions, such as those found in the active layers of organic solar cells. It is shown that each of these two disorder components can be partitioned into contributions related to the energetic disorder of the transport states and to the disorder associated with the hole–electron electrostatic interaction energies. The methodology is applied to evaluate the energy distributions of the CT states in representative bulk heterojunctions based on poly‐3‐hexyl‐thiophene and phenyl‐C61‐butyric‐acid methyl ester. The results indicate that the torsional fluctuations of the polymer backbones are the main source of both static and dynamic disorders for the CT states as well as for the transport levels. The impact of static and dynamic disorders on radiative and nonradiative geminate recombination processes is also discussed.  相似文献   

15.
《BBA》2022,1863(2):148521
We investigate energy transfer pathways between strongly coupled chlorophylls (Chls) in the CP29 (LHCII B4.1) antenna complex of Pisum sativum, including the possibility of higher energy states. We test for the environmental effects caused by the protein, membrane and solvent using a hybrid QM/MM approach. Classical molecular dynamics simulations of the full CP29 complex embedded in a DOPC membrane have been performed, followed by calculations of the time dependent DFT spectra of all Chls at several timesteps. The relative orientations of transition dipole moments (TDMs) were specifically analyzed, including and excluding the point charge field (PCF) of the surrounding environment.The PCF is found to drastically shift the spectra of specific Chls, while the majority of Chls is mostly unaffected. The net effect on the sum spectrum is however found to be negligible: The few strong changes in Chl spectra cancel each other due to being opposite in sign. We further find that the spectra of the Chls coordinating to water show a blue shift upon introduction of the environment. Conversely, the spectra of the Chls coordinating to glutamine show a red shift upon activation of the PCF.As the main influence of the PCF for tuning the couplings, we identify the energetic position of the individual chromophores. The fine-tuning, especially for states energetically above the Qy state, is however controlled by the changes in the TDM orientations. We also find an indication for the PCF to steer potentially harmful high energy excitations away from the PSII core complex.  相似文献   

16.
We have suggested a model for the electronic excited states of the minorplant antenna, CP29, by incorporating a considerable part of the currentinformation offered by structure determination, site-directed mutagenesis,and spectroscopy in the modeling.We have assumed that the electronic excited states of the complex havebeen decided by the chlorophyll-chlorophyll (Chl) and Chl-proteininteractions and have modeled the Coulombic interaction between a pairof Chls in the point-dipole approximation and the Chl-protein interactionsare treated as empirical fit parameters.We have suggested the Qy dipole moment orientations and the siteenergies for all the chlorophylls in the complex through a simultaneoussimulation of the absorption and linear dichroism spectra.The assignments proposed have been discussed to yield a satisfactoryreproduction of all prominent features of the absorption, linear and circulardichroism spectra as well as the key spectral and temporal characteristics ofthe energy transfer processes among the chlorophylls.The orientations and the spectral assignments obtained by relatively simpleexciton calculations have been necessary to provide a good point ofdeparture for more detailed treatments of structure-function relationship inCP29. Moreover, it has been discussed that the CP29 model suggested canguide the studies for a better understanding of the structure-functionrelationship in the major plant antenna, LHCII.  相似文献   

17.
Excitation energy transfer (EET) in light-harvesting antennae is a highly efficient key event in photosynthesis, where light-induced dynamics of the antenna pigment-protein complexes may play a functional role. So far, however, the relationship between EET and protein dynamics remains unknown. C-phycocyanin (C-PC) is the main pigment/protein complex present in the cyanobacterial antenna, called "phycobilisome". The aim of the present study was to investigate light-induced C-PC internal thermal motions (ps timescale) measured by inelastic neutron scattering. To synchronize the beginning of the laser flash (6 ns duration) with that of the neutron test pulse ( approximately 87 mus duration), we developed a novel type of "time-resolved" experimental setup on MIBEMOL time-of-flight neutron spectrometer (LLB, France). Data acquisition has been modified to get quasi-simultaneously "light" and "dark" measurements (with and without laser, respectively) and eliminate many spurious effects that could occur on the sample during the experiment. The study was carried out on concentrated C-PC ( approximately 135 g/L protein in D(2)O phosphate buffer), contained in an aluminium/sapphire sample holder (almost "transparent" for neutrons) and homogeneously illuminated inside an "integrating sphere". We observed very similar incoherent dynamical structure factors of C-PC with or without light. The vibrational density of states showed two very slightly increased vibrational modes with light, at approximately 30 and approximately 50 meV ( approximately 240 and approximately 400 cm(-1), respectively). These effects have to be verified by further experiments before probing any temporal evolution, by introducing a time delay between the laser flash and the neutron test pulse.  相似文献   

18.
Three-component Förster resonance energy transfer (FRET) has been used to obtain efficient FRET between the cationic conjugated polymer (CCP) as donor and 5-carboxy tetramethylrhodamine (TAMRA) dye as acceptor, by using an intermediate donor, fluorescein. In spite of the fact that there is enough overlap between the emission spectra of CCP and absorption spectra of TAMRA, the efficiency of FRET between CCP and TAMRA is poor. The reason for this is that while the Förster critical distance is not very sensitive to the overlap, the FRET efficiency is extremely sensitive to it. However, it is observed that the FRET efficiency between CCP and TAMRA improves considerably when fluorescein is introduced in the solution. The triple FRET so obtained can be used for deoxyribonucleic acid sequence detection in medical diagnostics because the fluorescence emission from TAMRA is pH-insensitive.  相似文献   

19.
Solute transport via ATP binding cassette (ABC) importers involves receptor-mediated substrate binding, which is followed by ATP-driven translocation of the substrate across the membrane. How these steps are exactly initiated and coupled, and how much ATP it takes to complete a full transport cycle, are subject of debate. Here, we reconstitute the ABC importer GlnPQ in nanodiscs and in proteoliposomes and determine substrate-(in)dependent ATP hydrolysis and transmembrane transport. We determined the conformational states of the substrate-binding domains (SBDs) by single-molecule Förster resonance energy transfer measurements. We find that the basal ATPase activity (ATP hydrolysis in the absence of substrate) is mainly caused by the docking of the closed-unliganded state of the SBDs onto the transporter domain of GlnPQ and that, unlike glutamine, arginine binds both SBDs but does not trigger their closing. Furthermore, comparison of the ATPase activity in nanodiscs with glutamine transport in proteoliposomes shows that the stoichiometry of ATP per substrate is close to two. These findings help understand the mechanism of transport and the energy coupling efficiency in ABC transporters with covalently linked SBDs, which may aid our understanding of Type I ABC importers in general.  相似文献   

20.
Fluorescent proteins (FPs) have revolutionized cell biology by allowing genetic tagging of specific proteins inside living cells. In conjunction with Förster’s resonance energy transfer (FRET) measurements, FP-tagged proteins can be used to study protein-protein interactions and estimate distances between tagged proteins. FRET is mediated by weak Coulombic dipole-dipole coupling of donor and acceptor fluorophores that behave independently, with energy hopping discretely and incoherently between fluorophores. Stronger dipole-dipole coupling can mediate excitonic coupling in which excitation energy is distributed near instantaneously between coherently interacting excited states that behave as a single quantum entity. The interpretation of FP energy transfer measurements to estimate separation often assumes that donors and acceptors are very weakly coupled and therefore use a FRET mechanism. This assumption is considered reasonable as close fluorophore proximity, typically associated with strong excitonic coupling, is limited by the FP β-barrel structure. Furthermore, physiological temperatures promote rapid vibrational dephasing associated with a rapid decoherence of fluorophore-excited states. Recently, FP dephasing times that are 50 times slower than traditional organic fluorophores have been measured, raising the possibility that evolution has shaped FPs to allow stronger than expected coupling under physiological conditions. In this study, we test if excitonic coupling between FPs is possible at physiological temperatures. FRET and excitonic coupling can be distinguished by monitoring spectral changes associated with fluorophore dimerization. The weak coupling mediating FRET should not cause a change in fluorophore absorption, whereas strong excitonic coupling causes Davydov splitting. Circular dichroism spectroscopy revealed Davydov splitting when the yellow FP VenusA206 dimerizes, and a novel approach combining photon antibunching and fluorescence correlation spectroscopy was used to confirm that the two fluorophores in a VenusA206 homodimer behave as a single-photon emitter. We conclude that excitonic coupling between VenusA206 fluorophores is possible at physiological temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号