首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examined the apoptosis inducing effects of Amaranthus spinosus L. aqueous extract in Allium cepa root meristematic cells and human erythrocytes. Cytogenetic assay revealed many apoptosis inducing cytogenetic aberrations viz., cytoplasmic breakage, cytoplasmic disintegration, cytoplasmic shrinkage, receding of cytoplasm, cytoplasmic vacuolation, enucleated cell, ghost cell, nuclear vacuolation, nuclear fragmentation and nuclear disintegration. A remarkable modification of red blood cell surface morphology was observed in the result of RBC assay. The treated RBCs show membrane blebbing and shrinkage, features typical for apoptosis in nucleated cells. Significant induction of cell death was observed in treated Allium root tip cells after Evans blue staining, disclosing the membrane damage potential of the plant extract. TTC assay results in reduced mitochondrial/metabolic activity in Allium root tip cells after treatment, designating the adverse effect of plant extract on mitochondrial respiratory chain. These results confirm the apoptosis inducing potential of A. spinosus extract. Confirming the present results by further in vitro studies, it can be effectively targeted against cell proliferation during cancer treatment by inducing apoptosis. Thus from the present investigation it can be concluded that the aqueous extract of A. spinosus exhibited apoptosis induction and cytotoxic activities.  相似文献   

2.
In the present study, we determined the protective role of lutein against Aβ 25–35 peptide-induced oxidative stress and apoptosis in bEND.3 cells. Cell viability was determined through MTT assay. Reactive oxygen species, lipid peroxides, and antioxidant enzyme activities were evaluated to analyze the oxidative stress status. NF-κB and Nrf-2 downstream target protein expressions were determined through western blot. Apoptosis was analyzed through caspase activities and subG1 accumulation. The results showed that Aβ 25–35 significantly increased (p < 0.001) oxidative stress biomarkers. Aβ 25–35 significantly up-regulated NF-κB nuclear expression and down-regulated Nrf-2 levels and HO-1 and, NQO-1 expressions. Aβ 25–35 induced apoptosis through decreasing mitochondrial membrane potential and increasing caspase 9 and 3 activities. Lutein pre-treatment significantly (p < 0.001) improved cell viability and decreased ROS levels (p < 0.001) and lipid peroxidation (p < 0.01). Lutein prevented Aβ 25–35-induced NF-κB nuclear expressions and up-regulated Nrf-2 expressions. Further, lutein also improved mitochondrial membrane potential and down-regulated caspase activities and subG1 accumulation. The present study shows the protective role of lutein against Aβ 25–35-induced toxicity by modulating Nrf-2 and NF-κB expressions in cerebrovascular endothelial cells.  相似文献   

3.
Cubic membranes (CM) are highly organized membrane structures found in biological systems. They are mathematically well defined and reveal a three-dimensional nano-periodic structure with cubic symmetry. These membrane arrangements are frequently induced in cells under stress, disease conditions, or upon viral infection. In this study, we investigated CM formation in the mitochondria of amoeba Chaos carolinense and observed a striking correlation between the organism’s ability to generate CM and the cell survival under starvation. Since starvation also induces autophagy, rapamycin was used to pharmacologically induce autophagy, and interestingly, CM formation was observed in parallel. Conversely, inhibition of autophagy reverted the cubic mitochondrial inner membrane morphology to tubular structure. In starved Chaos cells, mitochondria and autophagosomes did not co-localize and ATP production was sustained. CM transition in the mitochondria during starvation or upon induction of autophagy might prevent their sequestration by autophagosomes, thus slowing their rate of degradation. Such sustained mitochondrial activity may allow amoeba Chaos cells to survive for a longer period upon starvation.  相似文献   

4.
The experimental study identified the antiviral activity of Bacillus pumilus RNase (binase) against the reovirus of serotype 1/strain Lang. For the first time, it has been found that 50 μg/mL of binase effectively reduced the hemagglutinin and cytocidal activity of reovirus in Vero cell line. The preincubation of the enzyme with reovirus before infection of the cells inhibited the viral replication. To determine the stagedependent effect of reovirus reproduction upon binase inhibition, the infected cells were treated with binase or RNase A at different phases of the infectious cycle. The treatment of virus-infected cells has revealed that both enzymes have a maximal antiviral effect on the reovirus propagation during early phases of the reovirus reproduction cycle, with binase being more effective than RNase A. It has been hypothesized that the combined action of the oncolytic reovirus and binase is promising for the elimination of tumor cells carrying mutated RAS gene.  相似文献   

5.
The level of biosynthesis of secreted guanyl-specific ribonucleases (RNases) of Bacillus intermedius (binases) and Bacillus circulans (RNases Bci) by recombinant B. subtilis strains increases under nitrogen starvation. The promoter of the binase gene carries the sequences homologous to the recognition sites of the regulatory protein TnrA, which regulates gene expression under growth limitation by nitrogen. Using the B. subtilis strain defective in protein TnrA, it has been shown that the regulatory protein TnrA is involved in the regulation of expression of the binase gene and the gene of RNase Bci. The TnrA regulation of expression of the RNase Bci gene is indirect, probably by means of the regulatory protein PucR. Thus, it has been established that at least two regulatory mechanisms activate the expression of the genes encoding the secreted RNases of spore-forming bacteria: a system of proteins homologous to the B. subtilis PhoP-PhoR, and regulation by a protein similar to the B. subtilis TnrA regulatory protein.  相似文献   

6.
In the present study, we investigated the protective mechanism of paeoniflorin (PF), a monoterpene glycoside extracted from Radix Paeoniae alba roots, on MPP+-induced neurotoxicity in cultured rat pheochromocytoma cells (PC12). Our work included examination of cell viability assessment, amounts of released lactic dehydrogenase (LDH), intracellular Ca2+ concentration, cell apoptosis, mitochondrial membrane potential, caspase-3 activity, and expression profiling of two apoptosis-related genes (Bcl-2 and Bax). It was shown that, PF functioned as an MPP+ antagonist, being able to suppress apoptosis, decrease LDH release and Ca2+ concentration, attenuate membrane potential collapse and, inhibit caspase-3 activation, decrease in Bax/Bcl-2 ratio. These observations suggest that PF could protect PC12 cells against MPP+-induced injury and the mechanism PF’s neuroprotective effect was closely associated with Bcl-2 up-regulation and Bax down-regulation. PF has neuroprotective effects on MPP+-induced apoptosis in PC12 cells via regulating mitochondrial membrane potential and Bcl-2/Bax/caspase-3 signaling pathways, and this new insight will help develop a PF-based therapeutic strategy for treatmenting neurodegenerative diseases and injury.  相似文献   

7.

Background

Eimeria tenella (E. tenella) is a species of Eimeria that causes haemorrhagic caecal coccidiosis, resulting in major economic losses in the global poultry industry. After E. tenella infection, the amount of ATP and Bax in host cells showed highly significant changes. Therefore, it is necessary to investigate the effects of ATP and Bax on the apoptosis of E. tenella host cells.

Results

The ATP-treated group and the V5-treated group had higher E. tenella infection rates than the untreated group at 24, 48, 72, 96, and 120 h after infection with E. tenella. The results of flow cytometry showed that compared with the control group, the mitochondrial permeability transition pore (MPTP) opening in the untreated group was highly significantly increased (P?<?0.01) at 4, 24, 48, 72, 96, and 120 h. Moreover, results from Hoechst-Annexin V-PI staining and flow cytometry showed that the rates of early apoptosis, late apoptosis, and necrosis in the untreated group were significantly lower (P?<?0.05) or highly significantly lower (P?<?0.01) than those of the control group at 4 h, while the rates of early apoptosis, late apoptosis, and necrosis in the untreated group were higher at varying degrees than those in the control group at 24–120 h (P?<?0.05 or P?<?0.01). After treatment with ATP and Bax inhibitors, the rates of early apoptosis, late apoptosis, and necrosis, in addition to the MPTP opening in both the ATP-treated and V5-treated groups, were significantly lower (P?<?0.05) or highly significantly lower (P?<?0.01) than those in the untreated group.

Conclusions

ATP and Bax play important roles in regulating the apoptosis of E. tenella host cells.
  相似文献   

8.
Tumour cells distinguish from normal cells by fermenting glucose to lactate in presence of sufficient oxygen and functional mitochondria (Warburg effect). Crabtree effect was invoked to explain the biochemical basis of Warburg effect by suggesting that excess glucose suppresses mitochondrial respiration. It is known that the Warburg effect and Crabtree effect are displayed by Saccharomyces cerevisiae, during growth on abundant glucose. Beyond this similarity, it was also demonstrated that expression of human pro-apoptotic proteins in S. cerevisiae such as Bax and p53 caused apoptosis. Here, we demonstrate that p53 expression in S. cerevisiae (Crabtree-positive yeast) causes increase in ROS levels and apoptosis when cells are growing on non-fermentable carbon sources but not on fermentable carbon sources, a feature similar to tumour cells. In contrast, in Kluyveromyces lactis (Crabtree-negative yeast) p53 causes increase in ROS levels and apoptosis regardless of the carbon source. Interestingly, the increased ROS levels and apoptosis are correlated to increased oxygen uptake in both S. cerevisiae and K. lactis. Based on these results, we suggest that at least in yeast, fermentation per se does not prevent the escape from apoptosis. Rather, the Crabtree effect plays a crucial role in determining whether the cells should undergo apoptosis or not.  相似文献   

9.
10.
Helveticin-M, a novel Class III bacteriocin produced by Lactobacillus crispatus exhibited an antimicrobial activity against Staphylococcus aureus, S. saprophyticus, and Enterobacter cloacae. To understand how Helveticin-M injured target cells, Helveticin-M was cloned and heterologously expressed in Escherichia coli. Subsequently, the cell wall organization and cell membrane integrity of target cells were determined. The mechanism of cellular damage differed according to bacterial species. Based on morphology analysis, Helveticin-M disrupted the cell wall of Gram-positive bacteria and disorganized the outer membrane of Gram-negative bacteria, therefore, altering surface structure. Helveticin-M also disrupted the inner membrane, as confirmed by leakage of intracellular ATP from cells and depolarization of membrane potential of target bacteria. Based on cell population analysis, Helveticin-M treatment caused the increase of cell membrane permeability, but the cytosolic enzymes were not influenced, indicating that it was the sublethal injury. Therefore, the mode of Helveticin-M action is bacteriostatic rather than bactericidal.  相似文献   

11.

Key message

With phosphate deficiency, the role of phosphatidylglycerol is compensated by increased glycolipid content in thylakoid membrane biogenesis but not photosynthetic electron transport in Arabidopsis chloroplasts.

Abstract

In plants and cyanobacteria, anionic phosphatidylglycerol (PG) is the only major phospholipid in thylakoid membranes, where neutral galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are predominant. In addition to provide a lipid bilayer matrix, PG plays a specific role in photosynthetic electron transport. Non-phosphorous sulfoquinovosyldiacylglycerol (SQDG) is another anionic lipid in thylakoids; it substitutes for PG under phosphate (Pi) deficiency to maintain proper balance of anionic charge in thylakoid membranes. Although the crucial role of PG in photosynthesis has been deeply analyzed in cyanobacteria, its physiological function in seed plants other than photosynthesis remains unclear. To reveal specific roles of PG and functional overlaps with other thylakoid lipids, we characterized a PG-deficient Arabidopsis mutant (pgp1-2) under Pi-controlled conditions. Under Pi-sufficient conditions, the proportion of PG and other thylakoid lipids was decreased in pgp1-2, which led to severe disruption of thylakoid membrane biogenesis. Under Pi-deficient conditions, the proportion of all glycolipids in the mutant was greatly increased, with that of PG further decreased. In Pi-deficient pgp1-2, thylakoid membranes remarkably developed, which was accompanied by a change in nucleoid morphology and restored expression of nuclear- and plastid-encoded photosynthesis genes. Increase in glycolipid content with Pi deficiency may compensate for the loss of PG in terms of thylakoid membrane biogenesis. Although Pi deficiency increased chlorophyll and photosynthesis protein content in pgp1-2, it critically decreased photochemical activity in PSII. Further deprivation of PG in photosynthesis complexes may abolish the PSII activity in Pi-deficient pgp1-2, which suggests that glycolipids cannot replace PG in photosynthesis.
  相似文献   

12.
13.
As a quorum-sensing molecule for bacteria–bacteria communication, N-(3-oxododecanoyl)-homoserine lactone (C12) has been found to possess pro-apoptotic activities in various cell culture models. However, the detailed mechanism of how this important signaling molecule function in the cells of live animals still remains largely unclear. In this study, we systematically investigated the mechanism for C12-mediated apoptosis and studied its anti-tumor effect in Caenorhabditis elegans (C. elegans). Our data demonstrated that C12 increased C. elegans germ cell apoptosis, by triggering mitochondrial outer membrane permeabilization (MOMP) and elevating the reactive oxygen species (ROS) level. Importantly, C12-induced ROS increased the expression of genes critical for DNA damage response (hus-1, clk-2 and cep-1) and genes involved in p38 and JNK/MAPK signaling pathway (nsy-1, sek-1, pmk-1, mkk-4 and jnk-1). Furthermore, C12 failed to induce germ cell apoptosis in animals lacking the expression of each of those genes. Finally, in a C. elegans tumor-like symptom model, C12 significantly suppressed tumor growth through inhibiting the expression of RAS/MAPK pathway genes (let-23/EGFR, let-60/RAS, lin-45/RAF, mek-2/MEK and mpk-1/MAPK). Overall, our results indicate that DNA damage response and MAPK activation triggered by mitochondrial ROS play important roles in C12-induced apoptotic signaling in C. elegans, and RAS/MAPK suppression is involved in the tumor inhibition effect of C12. This study provides in vivo evidence that C12 is a potential candidate for cancer therapeutics by exerting its pro-apoptotic and anti-tumor effects via elevating mitochondria-dependent ROS production.  相似文献   

14.
15.
The diploid yeast Candida tropicalis, which can utilize n-alkane as a carbon and energy source, is an attractive strain for both physiological studies and practical applications. However, it presents some characteristics, such as rare codon usage, difficulty in sequential gene disruption, and inefficiency in foreign gene expression, that hamper strain improvement through genetic engineering. In this work, we present a simple and effective method for sequential gene disruption in C. tropicalis based on the use of an auxotrophic mutant host defective in orotidine monophosphate decarboxylase (URA3). The disruption cassette, which consists of a functional yeast URA3 gene flanked by a 0.3 kb gene disruption auxiliary sequence (gda) direct repeat derived from downstream or upstream of the URA3 gene and of homologous arms of the target gene, was constructed and introduced into the yeast genome by integrative transformation. Stable integrants were isolated by selection for Ura+ and identified by PCR and sequencing. The important feature of this construct, which makes it very attractive, is that recombination between the flanking direct gda repeats occurs at a high frequency (10?8) during mitosis. After excision of the URA3 marker, only one copy of the gda sequence remains at the recombinant locus. Thus, the resulting ura3 strain can be used again to disrupt a second allelic gene in a similar manner. In addition to this effective sequential gene disruption method, a codon-optimized green fluorescent protein-encoding gene (GFP) was functionally expressed in C. tropicalis. Thus, we propose a simple and reliable method to improve C. tropicalis by genetic manipulation.  相似文献   

16.
Trichokonins (TKs) are antimicrobial peptaibols extracted from Trichoderma pseudokoningii strain SMF2. In this paper, it was discovered that TK VI, the main active ingredient of TKs, had a profound inhibitory effect on the growth and sporulation of the moth orchid gray mold, Botrytis cinerea. In addition, TK VI increased the cell membrane permeability of the pathogen. Further investigation of nuclear DNA fragmentation, subcellular structure disintegration, and mitochondrial membrane potential depolarization, as well as the appearance of reactive oxygen species, indicated that TK VI could induce programmed cell death in the necrotrophic pathogenic fungus B. cinerea.  相似文献   

17.
In order to investigate the mechanism of apoptosis in rat intestinal epithelial cells (IEC-6) induced by hydrogen peroxide (H2O2), IEC-6 cells were subjected to 20 μmol/L H2O2 and cell proliferation activity was determined using 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide. Cell morphology was observed by microscopy and cell apoptosis was detected by acridine orange and ethidium bromide staining and the portion of apoptotic cells was measured by flow cytometry. Genes and proteins related to cell apoptosis were detected by RT-PCR and Western blotting, and the mitochondrial membrane potential was evaluated by fluorescence probes. Results: Significant morphology damage was caused by exposure to H2O2, and results showed that ROS generation significantly increased (P < 0.01). The activity of superoxide dismutase decreased significantly (P < 0.05), malondialdehyde content increased (P < 0.05), and expression of both catalase and glutathione peroxidase decreased significantly (P < 0.05) in the H2O2 treatment group. Mitochondrion membrane potential was reduced, cytochrome released into the cytoplasm and caspase-9 and caspase-3 were significantly increased (P < 0.01) after treatment with H2O2. Moreover, the ratio of Bax/Bcl-2 and apoptosis were significantly increased (P < 0.01) in the H2O2 group. In conclusion, the present study indicated that the mitochondrial pathway plays a vital role in H2O2 induced IEC-6 cell apoptosis.  相似文献   

18.
The RNA binding protein quaking (QKI), a key member of the STAR family, as an upstream gene could involve in much process including cell proliferation, apoptosis, differentiation and so on. However, the roles of QKI in germ cell, especially in swine testis (ST) cells, was not clear currently. And apoptosis plays important roles in the growth and development. The purpose of the present study was to clarify the relationship between QKI and apoptosis in ST cells. Firstly, our results showed that pEF1α-QKI and shQKI3 have clear effects on expression levels of QKI. Secondly, we established that QKI directly binds to WT1 3′UTR by binding with QRE-1 (2046–2052 bp, ACTAAC) only. Furthermore, QKI overexpression significantly increased the expression levels of WT1 and Bcl-2. QKI also has the effect on delaying the degradation of WT1 mRNA. In addition, we verified that QKI had a significantly suppressed apoptosis in ST cells. Finally, pBI-WT1 could make up for shQKI3-induced decrease in WT1, Bcl-2 mRNA levels and suppress apoptosis in ST cells. The results demonstrated that QKI was an important regulatory factor that affects apoptosis by targeting WT1 gene.  相似文献   

19.
20.
This review aims to elucidate the different mechanisms of blood brain barrier (BBB) disruption that may occur due to invasion by different types of bacteria, as well as to show the bacteria–host interactions that assist the bacterial pathogen in invading the brain. For example, platelet-activating factor receptor (PAFR) is responsible for brain invasion during the adhesion of pneumococci to brain endothelial cells, which might lead to brain invasion. Additionally, the major adhesin of the pneumococcal pilus-1, RrgA is able to bind the BBB endothelial receptors: polymeric immunoglobulin receptor (pIgR) and platelet endothelial cell adhesion molecule (PECAM-1), thus leading to invasion of the brain. Moreover, Streptococcus pneumoniae choline binding protein A (CbpA) targets the common carboxy-terminal domain of the laminin receptor (LR) establishing initial contact with brain endothelium that might result in BBB invasion. Furthermore, BBB disruption may occur by S. pneumoniae penetration through increasing in pro-inflammatory markers and endothelial permeability. In contrast, adhesion, invasion, and translocation through or between endothelial cells can be done by S. pneumoniae without any disruption to the vascular endothelium, upon BBB penetration. Internalins (InlA and InlB) of Listeria monocytogenes interact with its cellular receptors E-cadherin and mesenchymal-epithelial transition (MET) to facilitate invading the brain. L. monocytogenes species activate NF-κB in endothelial cells, encouraging the expression of P- and E-selectin, intercellular adhesion molecule 1 (ICAM-1), and Vascular cell adhesion protein 1 (VCAM-1), as well as IL-6 and IL-8 and monocyte chemoattractant protein-1 (MCP-1), all these markers assist in BBB disruption. Bacillus anthracis species interrupt both adherens junctions (AJs) and tight junctions (TJs), leading to BBB disruption. Brain microvascular endothelial cells (BMECs) permeability and BBB disruption are induced via interendothelial junction proteins reduction as well as up-regulation of IL-1α, IL-1β, IL-6, TNF-α, MCP-1, macrophage inflammatory proteins-1 alpha (MIP1α) markers in Staphylococcus aureus species. Streptococcus agalactiae or Group B Streptococcus toxins (GBS) enhance IL-8 and ICAM-1 as well as nitric oxide (NO) production from endothelial cells via the expression of inducible nitric oxide synthase (iNOS) enhancement, resulting in BBB disruption. While Gram-negative bacteria, Haemophilus influenza OmpP2 is able to target the common carboxy-terminal domain of LR to start initial interaction with brain endothelium, then invade the brain. H. influenza type b (HiB), can induce BBB permeability through TJ disruption. LR and PAFR binding sites have been recognized as common routes of CNS entrance by Neisseria meningitidis. N. meningitidis species also initiate binding to BMECs and induces AJs deformation, as well as inducing specific cleavage of the TJ component occludin through the release of host MMP-8. Escherichia coli bind to BMECs through LR, resulting in IL-6 and IL-8 release and iNOS production, as well as resulting in disassembly of TJs between endothelial cells, facilitating BBB disruption. Therefore, obtaining knowledge of BBB disruption by different types of bacterial species will provide a picture of how the bacteria enter the central nervous system (CNS) which might support the discovery of therapeutic strategies for each bacteria to control and manage infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号