首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Testicular cancer is the most common cancer among young men of reproductive age. Bleomycin is a frequently used drug for the treatment of several malignancies and is part of the chemotherapy protocols in testicular cancer. Bleomycin causes an increase in oxidative stress which has been shown to induce apoptosis in cancer cells. Curcumin (diferuloylmethane), an active component of the spice turmeric, has attracted interest because of its anti-inflammatory and chemopreventive activities. However, no study has been carried out so far to elucidate its interaction with bleomycin in testicular cancer cells. In this study, we investigated the effects of curcumin and bleomycin on apoptosis signalling pathways and compared the effects of bleomycin with H2O2 which directly produces reactive oxygen species. We measured apoptosis markers such as caspase-3, caspase-8, and caspase-9 activities and Bcl-2, Bax, and Cyt-c levels in NCCIT cells incubated with curcumin (5 μM), bleomycin (120 μg/ml), bleomycin + curcumin, H2O2 (35 μM), and H2O2 + curcumin for 72 h. Curcumin, bleomycin, and H2O2 caused apoptosis indicated as increases in caspase-3, caspase-8, and caspase-9 activities and Bax and cytoplasmic Cyt-c levels and a decrease in Bcl-2 level. Concurrent use of curcumin with bleomycin decreased caspase activities and Bax and Cyt-c levels compared to their separate effects in NCCIT cells. Our findings suggest that concurrent use of curcumin during chemotherapy in testis cancer should be avoided due to the inhibitory effect of curcumin on bleomycin-induced apoptosis.  相似文献   

3.
Curcumin, a major bioactive component of turmeric, has diverse therapeutic effects such as anti-inflammatory, antioxidant, anticancer, and antinociceptive activities. The acid-sensing ion channels (ASICs), which can be activated by acute drops in the extracellular pH, play an important role in nociception. However, very little is known about the interaction between ASICs and curcumin in nociception of inflammation. In our study, we investigated whether the antinociceptive effects of curcumin are mediated via ASICs using an orofacial nociceptive model and in vitro western blotting, immunofluorescence, whole-cell patch-clamp recordings in the trigeminal system. Intraperitoneally administered curcumin at a dose of 50 mg/kg can reduce hyperalgesia in both the phases of a formalin-induced orofacial nociceptive model. Curcumin reduced the amplitude of ASICs currents in a dose-dependent manner in trigeminal ganglion (TG) neurons, and curcumin also reduced the protein quantity but did not change the distribution of ASICs in TG. Thus, our results indicate that curcumin can reduce formalin-induced ASICs activation and thus inhibit ASICs-mediated inflammatory pain hypersensitivity.  相似文献   

4.
5.
Curcumin, an active ingredient from the rhizome of the plant, Curcuma longa, has antioxidant, anti-inflammatory and anti-cancer activities. It has recently been demonstrated that the chemopreventive activities of curcumin might be due to its ability to inhibit cell growth and induce apoptosis. In the present study, we have investigated the effects of curcumin on growth and apoptosis in the human ovarian cancer cell line Ho-8910 by MTT assay, fluorescence microscopy, flow cytometry and Western blotting. Our data revealed that curcumin could significantly inhibit the growth and induce apoptosis in Ho-8910 cells. A decrease in expression of Bcl-2, Bcl-X(L) and pro-caspase-3 was observed after exposure to 40 microM curcumin, while the levels of p53 and Bax were increased in the curcumin-treated cells. These activities may contribute to the anticarcinogenic action of curcumin.  相似文献   

6.
Therapy with interleukin-2 (IL-2) induces remissions in some forms of cancer. This treatment however, is accompanied by side-effects which, in part, may be mediated by the formation of eicosanoids and plateletactivating factor. We investigated the systemic release of phospholipase A2 (PLA2), a rate-limiting enzyme in the formation of these lipid mediators, in patients receiving IL-2. In a pilot study of 4 patients we observed an increase in PLA2 activity in serial plasma samples obtained during the first day after a bolus infusion of IL-2, which increase closely correlated with that of antigen levels of secretory phospholipase A2 (sPLA2) as measured by enzyme-linked immunosorbent assay (r=0.92;P<0.001). In 20 patients, receiving 12×106–18×106 IU IL-2/m2, we then investigated the course of antigenic levels of sPLA2 in relation to those of the cytokines tumour necrosis factor (TNF) and interleukin-6 (IL-6) (both cytokines may induce sPLA2 in vivo). From 4 h on, sPLA2 levels significantly increased, reaching a peak 24 h after the IL-2 infusion. Subsequent IL-2 infusions even induced a further increase of sPLA2. This increase of sPLA2 was presumably not due to a direct effect of IL-2 on, for example, hepatocytes, since this cytokine, in contrast to IL-1, IL-6, TNF and interferon , was not able to induce the synthesis of sPLA2 by Hep G2 cells in vitro. Consistent with this, plasma levels of TNF and IL-6 in the patients rose, reaching peak levels before a zenith of sPLA2 occurred, i.e at 2 h and 4 h after the start of the IL-2 infusion respectively. sPLA2 levels significantly correlated with the development of the side-effects increase in body weight (r=0.49;P<0.0001) and decrease in mean arterial blood pressure (r=0.40;P<0.0001). Moreover, maximum sPLA2 levels induced by IL-2 were higher in patients who had progressive disease after therapy than in patients who had stable disease or a partial response.  相似文献   

7.
Several endogenously produced mediators, including cytokines such as IL-6, IL-10, and TNF-alpha and prostanoids such as prostaglandin E(2) (PGE(2)), regulate dendritic cell (DC) function and contribute to immune homeostasis. In this study, we report that exogenous PGE(2) enhances the production of IL-10 from bone marrow-derived DC (BM-DC). IL-6, but not TNF-alpha, release is enhanced by PGE(2) in the presence of anti-IL-10, suggesting that endogenous IL-10 masks PGE(2)-induced IL-6. Furthermore, both exogenous IL-10 and PGE(2) inhibit LPS-induced IL-6 and TNF-alpha, whereas selective inhibition of cyclooxygenase-2 (COX-2) or addition of anti-IL-10 causes the reverse effects. Exogenous IL-10, but not IL-6, dose-dependently suppresses COX-2 protein expression and PGE(2) production, and TNF-alpha does not reverse this effect. In contrast, anti-IL-10 up-regulates prostanoid production by LPS-stimulated BM-DC. Taken together, our results show that in response to PGE(2), BM-DC produce IL-10, which in turn down-regulates their own production of IL-6-, TNF-alpha-, and COX-2-derived prostanoids, and plays crucial roles in determining the BM-DC pro-inflammatory phenotype.  相似文献   

8.
9.
Curcumin has long been known to posses medicinal properties and recent scientific studies have shown its efficacy in treating cancer. Curcumin is now considered to be a promising anti-cancer agent and studies continue on its molecular mechanism of action. Curcumin has been shown to act in a multi-faceted manner by targeting the classical hallmarks of cancer like sustained proliferation, evasion of apoptosis, sustained angiogenesis, insensitivity to growth inhibitors, tissue invasion and metastasis etc. However, one of the emerging hallmarks of cancer is the avoidance of immune system by tumors. Growing tumors adopt several strategies to escape immune surveillance and successfully develop in the body. In this review we highlight the recent studies that show that curcumin also targets this process and helps restore the immune activity against cancer. Curcumin mediates several processes like restoration of CD4+/CD8+ T cell populations, reversal of type-2 cytokine bias, reduction of Treg cell population and suppression of T cell apoptosis; all these help to resurrect tumor immune surveillance that leads to tumor regression. Thus interaction of curcumin with the immune system is also an important feature of its multi-faceted modes of action against cancer. Finally, we also point out the drawbacks of and difficulties in curcumin administration and indicate the use of nano-formulations of curcumin for better therapeutic efficacy.  相似文献   

10.
The contribution of IL-4 and IL-13 to inflammation and cytokine responses was compared in mice with types-1 or -2 pulmonary granulomas (GR) elicited by beads bound to antigens of Mycobacteria bovis (PPD) or Schistosoma mansoni eggs (SEA). Type-2 SEA-GR produced the most IL-4 and IL-13. Type-1 PPD-GR produced detectable IL-13, but not IL-4. Mice were treated with anti-IL4 or anti-IL-13 Abs, then lesion size/composition, cytokine/chemokine mRNA and lymph node cytokines were measured. Type-1 GRs resisted individual Abs, but combined Abs augmented lesions by 20%. In contrast, anti-IL-4 abrogated type-2 GR by 30-40% and eosinophil recruitment by 60%. Anti-IL-13 abrogated type-2 GR by 20-30% with no effect on eosinophils. Combined depletion reduced lesion area by 60% and eosinophils by more than 80%. In type-1 GR lungs, anti-IL-4 and anti-IL-13 augmented IFNgamma and TNFalpha mRNA. In type 2 lungs, anti-IL-13 did likewise, but anti-IL-4 decreased TNFalpha without affecting IFNgamma mRNA. In both responses, IL-4 promoted MCP-1 and MCP-5 mRNA, but IL-13 inhibited chemokines in type-1 GR. In lymph nodes, anti-IL-4, but not anti-IL-13, abrogated type-2 cytokines. In fact, IL-13 down-regulated itself and other type-2 cytokines. In summary, IL-4 and IL-13 have common and disparate regulatory functions in types 1 and 2 responses.  相似文献   

11.
Idiopathic pulmonary fibrosis (IPF) is a fatal parenchymal lung disease with limited effective therapies. Interleukin (IL)-18 belongs to a rather large IL-1 gene family and is a proinflammatory cytokine, which acts in both acquired and innate immunity. We have previously reported that IL-18 play an important role in lipopolysaccharide-induced acute lung injury in mice. Persistent inflammation often drives fibrotic progression in the bleomycin (BLM) injury model. However, the role of IL-18 in pulmonary fibrosis (PF) is still unknown. IL-18 binding protein (IL-18BP) is able to neutralize IL-18 biological activity and has a protective effect against renal fibrosis. The aim of this study was to investigate the effects of IL-18BP on BLM-induced PF. In the present study, we found that IL-18 was upregulated in lungs of BLM-injured mice. Neutralization of IL-18 by IL-18BP improved the survival rate and ameliorated BLM-induced PF in mice, which was associated with attenuated pathological changes, reduced collagen deposition, and decreased content of transforming growth factor-β1 (TGF-β1). We further demonstrated that IL-18BP treatment suppressed the BLM-induced epithelial mesenchymal transition (EMT), characterized by decreased α-smooth muscle actin (α-SMA) and increased E-cadherin (E-cad) in vivo. In addition, we provided in vitro evidence demonstrating that IL-18 promoted EMT through upregulation of Snail-1 in A549 cells. In conclusion, our findings raise the possibility that the increase of IL-18 is involved in the development of BLM-induced PF through modulating EMT in a Snail-1-dependent manner. IL-18BP may be a worthwhile candidate option for PF therapy.  相似文献   

12.
IL-13 has been shown to exert potent anti-inflammatory properties. In this study, we elucidated the functional role of endogenous IL-13 in a murine model of septic peritonitis induced by cecal ligation and puncture (CLP). Initial studies demonstrated that the level of IL-13 increased in tissues including liver, lung, and kidney, whereas no considerable increase was found in either peritoneal fluid or serum after CLP. Immunohistochemically, IL-13-positive cells were Kupffer cells in liver, alveolar macrophages in lung, and epithelial cells of urinary tubules in kidney. IL-13 blockade with anti-IL-13 Abs significantly decreased the survival rate of mice after CLP from 53% to 14% on day 7 compared with control. To determine the potential mechanisms whereby IL-13 exerted a protective role in this model, the effects of anti-IL-13 Abs on both local and systemic inflammation were investigated. Administration of anti-IL-13 Abs did not alter the leukocyte infiltration and bacterial load in the peritoneum after CLP but dramatically increased the neutrophil influx in tissues after CLP, an effect that was accompanied by significant increases in the serum levels of aspartate transaminase, alanine transaminase, blood urea nitrogen, and creatinine. Tissue injury caused by IL-13 blockade was associated with increases in mRNA and the protein levels of CXC chemokines macrophage inflammatory protein-2 and KC as well as the CC chemokine macrophage inflammatory protein-1alpha and the proinflammatory cytokine TNF-alpha. Collectively, these results suggest that endogenous IL-13 protected mice from CLP-induced lethality by modulating inflammatory responses via suppression of overzealous production of inflammatory cytokines/chemokines in tissues.  相似文献   

13.
Curcumin has been shown to exhibit anti-inflammatory, antimutagenic, and anticarcinogenic activities. However, the effect of curcumin on the maturation and immunostimulatory function of dendritic cells (DC) largely remains unknown. In this study, we examined whether curcumin can influence surface molecule expression, cytokine production, and their underlying signaling pathways in murine bone marrow-derived DC. DC were derived from murine bone marrow cells and used as immature or LPS-stimulated mature cells. The DC were tested for surface molecule expression, cytokine production, dextran uptake, the capacity to induce T cell differentiation, and their underlying signaling pathways. Curcumin significantly suppressed CD80, CD86, and MHC class II expression, but not MHC class I expression, in the DC. The DC also exhibited impaired IL-12 expression and proinflammatory cytokine production (IL-1beta, IL-6, and TNF-alpha). The curcumin-treated DC were highly efficient at Ag capture, via mannose receptor-mediated endocytosis. Curcumin inhibited LPS-induced MAPK activation and the translocation of NF-kappaB p65. In addition, the curcumin-treated DC showed an impaired induction of Th1 responses and a normal cell-mediated immune response. These novel findings provide new insight into the immunopharmacological role of curcumin in impacting on the DC. These novel findings open perspectives for the understanding of the immunopharmacological role of curcumin and therapeutic adjuvants for DC-related acute and chronic diseases.  相似文献   

14.
Abstract

Certain dioxins, including 2,3,7,8,-tetrachloro-dibenzo-p-dioxin (TCDD), are exogenous ligands for an aryl hydrocarbon receptor (AhR) and induces various drug-metabolizing enzymes. In this study, we examined the effect of curcumin on expression of drug-metabolizing enzymes through the AhR and NF-E2 related factor 2 (Nrf2) pathways. Curcumin dose-dependently inhibited TCDD-induced expression of phase I enzyme cytochrome P450 1A1 (CYP1A1) and phase II enzymes NAD(P)H:quinone oxidoreductase-1 (NQO1) and heme oxygenase 1 (HO-1) but not tert-butyl hydroquinone-induced NQO1 and HO-1, suggesting that curcumin inhibited only AhR pathway, but not Nrf2 one directly. Furthermore, we used 14 curcumin derivatives and obtained the correlation between hydrophobicity of the compounds and suppressive effect against AhR transformation. Results from the quantitative structure active correlative analysis indicated that methoxy groups and β-diketone structure possessing keto-enol tautomerism in curcumin were necessary to inhibit AhR transformation, and the addition of methyl and methoxy group(s) to the curcumin increased the inhibition effect.  相似文献   

15.
16.
Jie Yang  Yue Wang  Yan Gao  Jie Shao  Xue Jun Zhang  Zhi Yao   《Cytokine》2009,46(3):382-391
Estrogens have been associated with risk for epithelial ovarian cancer (OVCA). Both IL-6 and IL-8 are also likely involved in the progression of OVCA. In order to discover the underline molecular mechanism, we investigated the modulation of estrogen and two cytokines in the growth and progression of epithelial OVCA. In these studies, the effect of 17β-estradiol (E2) on the expression levels of IL-6, IL-8 and their receptors was investigated. The effect of IL-6 and IL-8 on activation of estrogen-responsive promoter as well as estrogen receptor (ER)α and ERβ expression was also analyzed. Gene expression profile analysis revealed that CAOV-3 and OVCAR-3 cells, which express ER, IL-6 and IL-8 receptors, are suitable model for this study. We found that E2 not only enhanced IL-6 and IL-8 production via NF-κB signaling pathway, but also modulated their respective receptor expression. Tamoxifen (Txf), an ER antagonist, completely abolished E2-stimulated cell growth and the expression of IL-6 and IL-8. IL-6/IL-8-induced cell proliferation was completely blocked by their specific neutralizing antibodies, which partially inhibited E2-induced cell growth. In the absence of estrogen, both cytokines activated estrogen-responsive promoter, which was completely blocked by Txf, and caused a dose-dependent ERα increase and ERβ decrease. Pretreatment of OVCAR-3 with p38 MAPK, MEK1/2 or ErbB2 MAPK inhibitors, respectively, blocked IL-6-mediated induction of estrogen-responsive promoter while Src inhibitor blocked IL-8-induced activation of estrogen-responsive promoter. These results provide a novel mechanism that estrogens, IL-6 and IL-8 may form a common amplifying signaling cascade to modulate OVCA growth and progression. Estrogen-induced OVCA proliferation is partially occurring via enhanced IL-6 and IL-8 production and modulated their receptors, and IL-6/IL-8 could also promote OVCA growth through an ERα pathway.  相似文献   

17.
Curcumin has been reported to possess multifunctional bioactivities, especially the ability to inhibit proinflammatory induction. We previously demonstrated that the mono-carbonyl analogues of curcumin possessed improved pharmacokinetic profiles both in vitro and in vivo. In this study, we synthesized and examined a series of 5-carbon linker-containing mono-carbonyl analogues of curcumin with potent inhibitory activities against TNF-α and IL-6 release in LPS-stimulated RAW 264.7 macrophages. Discussion and conclusions are given regarding structure-activity relationships (SAR). The two most potent analogues among the tested compounds, B75 and C12, exhibited anti-inflammatory abilities in a dose-dependent manner in macrophages. This raises the possibility that mono-carbonyl analogues of curcumin might serve as potential agents for the treatment of various inflammatory diseases.  相似文献   

18.
19.
Curcumin, an ingredient of turmeric, exhibits a variety of biological activities such as anti-inflammatory, anti-atherosclerotic, anti-proliferative, anti-oxidant, anti-cancer and anti-metastatic. It is a highly pleiotropic molecule that inhibits cell proliferation and induces apoptosis in cancer cells. Despite its imperative biological activities, chemical instability, photo-instability and poor bioavailability limits its utilization as an effective therapeutic agent. Therefore, enhancing the bioavailability of curcumin may improve its therapeutic index for clinical setting. In the present study, we have conjugated curcumin with a biodegradable polymer Poly (D, L-lactic-co-glycolic acid) and evaluated its apoptotic potential in human colon carcinoma cells (HCT 116). The results show that curcumin-PLGA conjugate efficiently inhibits cell proliferation and cell survival in human colon carcinoma cells as compared to native curcumin. Additionally, curcumin conjugated with PLGA shows improved cellular uptake and exhibits controlled release at physiological pH as compared to native curcumin. The curcumin-PLGA conjugate efficiently activates the cascade of caspases and promotes intrinsic apoptotic signaling. Thus, the results suggest that conjugation potentiates the sustainability, anti-proliferative and apoptotic activity of curcumin. This approach could be a promising strategy to improve the therapeutic index of cancer therapy.  相似文献   

20.
金玫  李鹏  刘江伟 《生物磁学》2011,(23):4589-4591
姜黄素是一种疏水多酚,从姜黄中提取的姜黄磺胺类草药。半个世纪以来大量的研究表明姜黄素在体外及体内显示了各种诸如抗炎、细胞活素的释放、抗氧化、免疫调节、促进凋亡以及抗血管生成的特性。姜黄素同样也被证明是耐药性和放疗不敏感性的调解者。同样,在各种临床试验研究中证明了姜黄素抗肿瘤的作用,本文就姜黄素在消化系统肿瘤中的抗肿瘤机制做一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号