首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The analyses of faecal bile acids in colorectal cancer patients, breast cancer patients and healthy control subjects is described. Faecal excretion of total bile acids was similar in the three groups. The major bile acids detected were lithocholic acid (LCA) and deoxycholic acid (DCA) and the proportions of these (LCA:DCA ratio) were diametrically opposed in the colorectal cancer patients (1.91 +/- 0.33) and control subjects (0.90 +/- 0.09). Patients with adenocarcinoma of the breast also exhibited a higher LCA:DCA ratio (1.24 +/- 0.10) than the control group. The faecal LCA:DCA ratio is an important marker of cancer risk especially cancer of the large bowel and it is suggested that it may be a useful adjunct to future screening procedures.  相似文献   

2.
The multidrug resistance-associated protein 3 (MRP3) is a multispecific anion transporter that is capable of transporting a number of conjugated and unconjugated bile acids. Expression of the MRP3 gene is increased during pathological states associated with elevated bile acid concentrations indicating a role for this transporter in adaptive and homeostatic bile acid metabolism. Analysis of Mrp3 mRNA levels in various mouse tissues with known relevance and/or exposure to bile acids revealed the highest levels of basal expression in the colon followed in order by the liver, duodenum, jejunum, ileum, and kidney. Functional analysis of a murine Mrp3 promoter reporter construct revealed vitamin D receptor (VDR)-dependent activation by 1,25-dihydroxyvitamin D(3) (VD3), 9-cis-retinoic acid (RA), and the cholestatic secondary bile acid, lithocholic acid (LCA). Using a series of deletion constructs combined with sequence analysis, a candidate VDR response element (VDRE) was identified between -1028 and -1014 bp of the Mrp3 promoter. Activation of the Mrp3 promoter in response to VD3, RA, or LCA, as well as binding of VDR/RXR heterodimers, was attenuated substantially by mutation of this VDRE. Treatment of mice with VD3 or LCA demonstrated in vivo modulation of the Mrp3 gene in colon but not in the liver. Reduction of endogenous VDR expression in colon adenocarcinoma MCA-38 cells by siRNA transfection was associated with reduced constitutive and inducible expression of the Mrp3 gene. These data support a regulatory role for the VDR in the protection of colon cells from bile acid toxicity through regulation of the Mrp3 expression.  相似文献   

3.
Intrahepatic cholestasis of pregnancy is always accompanied by adverse fetal outcomes such as malfunctions of respiration. Farnesoid X receptor (FXR) plays a critical role in the homeostasis of bile acids. Thus, we are determined to explore the effects of farnesoid X receptor (FXR) and five bile acids on respiratory rhythm generation and modulation of neonatal rats. Spontaneous periodic respiratory-related rhythmical discharge activity (RRDA) was recorded from hypoglossal nerves during the perfusion of modified Krebs solution. Group 1–6 was each given GW4064 and five bile acids of chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), cholic acid (CA) as well as ursodeoxycholic acid (UDCA) at different concentrations to identify their specific functions on respiratory rhythm modulations. Group 7 was applied to receive FXR blocker Z-guggulsterone and Z-guggulsterone with the above bile acids separately to explore the role of FXR in the respiratory rhythm modulation. Group 8 was given dimethyl sulfoxide (DMSO) as controls. Apart from UDCA, CDCA, DCA LCA and CA all exerted effects on RRDA recorded from hypoglossal nerves in a concentration-dependent manner. Respiratory cycle (RC), Inspiratory time (TI), Expiratory Time (TE) and Integral Amplitude (IA) were influenced and such effects could be reversed by Z-guggulsterone. FXR may contribute to the effects on the modulation of respiratory rhythm exerted by bile acids.  相似文献   

4.
It has been shown that lithocholic glucuronide is more cholestatic than lithocholic acid (LCA), as well as its taurine and glycine conjugates. Furthermore, LCA hydroxylation is thought to be a major detoxifying mechanism. Therefore, the role of LCA glucuronidation and hydroxylation was investigated during the development of LCA-induced cholestasis and recovery from it. Male rats received a bolus intravenous injection of [14C]LCA (12 mumol/100 g body weight) and bile samples were collected every 30 min for 5 h. Bile flow (BF) was reduced immediately after LCA injection, dropping to 40% of basal BF at 60 min. It then started to increase, reaching normal bile flow values at 3.5 h. Morphologically, canalicular lesions were dominant at 60 min and virtually absent at 2 h. At 60 min (maximal cholestasis), 30% of the LCA injected was secreted in bile, 20% was found in plasma while the other 50% was recovered in the liver and distributed mainly in plasma membranes, microsomes and cytosol. At the end of the experiment (normal BF), 20% of the LCA injected was still in the liver but was present mainly in the cytosol. In bile, within 30 min after injection, 46% of the LCA secreted was lithocholic glucuronide, 24% was conjugated with taurine and glycine, and 21% was in the form of hydroxylated bile acids. During the recovery period, lithocholic glucuronide secretion decreased to 18-25%. Taurine and glycine conjugate secretion increased to a maximum of 43% at 60 min, after which it was reduced to 21-28%. In contrast, hydroxylated metabolites were elevated during the recovery periods, reaching a maximum (45%) at 120 min and remaining constant thereafter. These results suggest that: (i) LCA binding to plasma membranes and microsomes appeared to correlate with the development of cholestasis; (ii) LCA glucuronidation may initiate and/or contribute to LCA-induced cholestasis; and (iii) hydroxylation predominates during recovery from cholestasis.  相似文献   

5.
Bile acid 7alpha-dehydroxylation by intestinal bacteria, which converts cholic acid and chenodeoxycholic acid to deoxycholic acid (DCA) and lithocholic acid (LCA), respectively, is an important function in the human intestine. Clostridium scindens is one of the most important bacterial species for bile acid 7alpha-dehydroxylation because C. scindens has high levels of bile acid 7alpha-dehydroxylating activity. We quantified C. scindens and secondary bile acids, DCA and LCA, in fecal samples from 40 healthy Japanese and investigated their correlation. Moreover, we used terminal restriction fragment length polymorphism (T-RFLP) analysis to investigate the effect of fecal microbiota on secondary bile acid levels. There was no correlation between C. scindens and secondary bile acid in fecal samples. On the other hand, T-RFLP analysis demonstrated that fecal microbiota associated with high levels of DCA were different from those associated with low levels of DCA, and furthermore that fecal microbiota in the elderly (over 72 years) were significantly different from those in younger adults (under 55 years). These results suggest that intestinal microbiota have a stronger effect on DCA level than does the number of C. scindens cells.  相似文献   

6.
Clostridioides difficile infections occur upon ecological / metabolic disruptions to the normal colonic microbiota, commonly due to broad-spectrum antibiotic use. Metabolism of bile acids through a 7α-dehydroxylation pathway found in select members of the healthy microbiota is regarded to be the protective mechanism by which C. difficile is excluded. These 7α-dehydroxylated secondary bile acids are highly toxic to C. difficile vegetative growth, and antibiotic treatment abolishes the bacteria that perform this metabolism. However, the data that supports the hypothesis that secondary bile acids protect against C. difficile infection is supported only by in vitro data and correlative studies. Here we show that bacteria that 7α-dehydroxylate primary bile acids protect against C. difficile infection in a bile acid-independent manner. We monoassociated germ-free, wildtype or Cyp8b1-/- (cholic acid-deficient) mutant mice and infected them with C. difficile spores. We show that 7α-dehydroxylation (i.e., secondary bile acid generation) is dispensable for protection against C. difficile infection and provide evidence that Stickland metabolism by these organisms consumes nutrients essential for C. difficile growth. Our findings indicate secondary bile acid production by the microbiome is a useful biomarker for a C. difficile-resistant environment but the microbiome protects against C. difficile infection in bile acid-independent mechanisms.  相似文献   

7.
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder associated with an increased risk of adverse fetal outcomes. It is characterised by raised maternal serum bile acids, which are believed to cause the adverse outcomes. ICP is commonly treated with ursodeoxycholic acid (UDCA). This study aimed to determine the fetal and maternal bile acid profiles in normal and ICP pregnancies, and to examine the effect of UDCA treatment. Matched maternal and umbilical cord serum samples were collected from untreated ICP (n = 18), UDCA-treated ICP (n = 46) and uncomplicated pregnancy (n = 15) cases at the time of delivery. Nineteen individual bile acids were measured using HPLC-MS/MS. Maternal and fetal serum bile acids are significantly raised in ICP compared with normal pregnancy (p = <0.0001 and <0.05, respectively), predominantly due to increased levels of conjugated cholic and chenodeoxycholic acid. There are no differences between the umbilical cord artery and cord vein levels of the major bile acid species. The feto-maternal gradient of bile acids is reversed in ICP. Treatment with UDCA significantly reduces serum bile acids in the maternal compartment (p = <0.0001), thereby reducing the feto-maternal transplacental gradient. UDCA-treatment does not cause a clinically important increase in lithocholic acid (LCA) concentrations. ICP is associated with significant quantitative and qualitative changes in the maternal and fetal bile acid pools. Treatment with UDCA reduces the level of bile acids in both compartments and reverses the qualitative changes. We have not found evidence to support the suggestion that UDCA treatment increases fetal LCA concentrations to deleterious levels.  相似文献   

8.
The vitamin D receptor (VDR), initially identified as a nuclear receptor for 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3], regulates calcium metabolism, cellular proliferation and differentiation, immune responses, and other physiological processes. Recently, secondary bile acids such as lithocholic acid (LCA) were identified as endogenous VDR agonists. To identify structural determinants required for VDR activation by 1alpha,25(OH)2D3 and LCA, we generated VDR mutants predicted to modulate ligand response based on sequence homology to pregnane X receptor, another bile acid-responsive nuclear receptor. In both vitamin D response element activation and mammalian two-hybrid assays, we found that VDR-S278V is activated by 1alpha,25(OH)2D3 but not by LCA, whereas VDR-S237M can respond to LCA but not to 1alpha,25(OH)2D3. Competitive ligand binding analysis reveals that LCA, but not 1alpha,25(OH)2D3, effectively binds to VDR-S237M and both 1alpha,25(OH)2D3 and LCA bind to VDR-S278V. We propose a docking model for LCA binding to VDR that is supported by mutagenesis data. Comparative analysis of the VDR-LCA and VDR-1alpha,25(OH)2D3 structure-activity relationships should be useful in the development of bile acid-derived synthetic VDR ligands that selectively target VDR function in cancer and immune disorders without inducing adverse hypercalcemic effects.  相似文献   

9.
An improved ultra performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) method was established for the simultaneous analysis of various bile acids (BA) and applied to investigate liver BA content in C57BL/6 mice fed 1% cholic acid (CA), 0.3% deoxycholic acid (DCA), 0.3% chenodeoxycholic acid (CDCA), 0.3% lithocholic acid (LCA), 3% ursodeoxycholic acid (UDCA), or 2% cholestyramine (resin). Results indicate that mice have a remarkable ability to maintain liver BA concentrations. The BA profiles in mouse livers were similar between CA and DCA feedings, as well as between CDCA and LCA feedings. The mRNA expression of Cytochrome P450 7a1 (Cyp7a1) was suppressed by all BA feedings, whereas Cyp7b1 was suppressed only by CA and UDCA feedings. Gender differences in liver BA composition were observed after feeding CA, DCA, CDCA, and LCA, but they were not prominent after feeding UDCA. Sulfation of CA and CDCA was found at the 7-OH position, and it was increased by feeding CA or CDCA more in male than female mice. In contrast, sulfation of LCA and taurolithocholic acid (TLCA) was female-predominant, and it was increased by feeding UDCA and LCA. In summary, the present systematic study on BA metabolism in mice will aid in interpreting BA-mediated gene regulation and hepatotoxicity.  相似文献   

10.
I Zusman  A Zimber 《Acta anatomica》1990,138(2):144-149
Effects of secondary bile acids--lithocholic (LCA) and deoxycholic (DCA)--on the in vitro development of early somite (10.5 days old) rat embryos were studied. It was shown that an addition to the culture medium of 0.1 mM LCA (final concentration) resulted in 9% growth-retarded and 12% malformed embryos when the duration of exposure was 24 h. When treatment with LCA was prolonged to 48 h, the rate of growth retardation increased to 18% and that of malformations to 40% versus 0.5% for both parameters observed in controls. This could be interpreted as a reversible or time-dependent effect of LCA on the in vitro development of the mammalian embryo. Culture of embryos in medium with 0.5 mM DCA resulted in 22% of growth retardation and 50% of malformations. DCA in 0.1 mM final concentration had only slight and statistically nonsignificant effects. Retardation of growth development could be demonstrated by a decrease in crown-rump length and the number of somites. Among malformed embryos, abnormalities in the development of the neural tube and exencephaly were the most common types of malformations. Abnormalities as well as growth retardation were accompanied by significant pathological changes in structure and perhaps in function of the endodermal visceral yolk sac cells. It could be suggested that secondary bile acids when present in pathophysiological concentrations can affect the embryonic development by direct inhibitory effects and that these effects may be time and dose dependent.  相似文献   

11.
Although statins are widely prescribed medications, there remains considerable variability in therapeutic response. Genetics can explain only part of this variability. Metabolomics is a global biochemical approach that provides powerful tools for mapping pathways implicated in disease and in response to treatment. Metabolomics captures net interactions between genome, microbiome and the environment. In this study, we used a targeted GC-MS metabolomics platform to measure a panel of metabolites within cholesterol synthesis, dietary sterol absorption, and bile acid formation to determine metabolite signatures that may predict variation in statin LDL-C lowering efficacy. Measurements were performed in two subsets of the total study population in the Cholesterol and Pharmacogenetics (CAP) study: Full Range of Response (FR), and Good and Poor Responders (GPR) were 100 individuals randomly selected from across the entire range of LDL-C responses in CAP. GPR were 48 individuals, 24 each from the top and bottom 10% of the LDL-C response distribution matched for body mass index, race, and gender. We identified three secondary, bacterial-derived bile acids that contribute to predicting the magnitude of statin-induced LDL-C lowering in good responders. Bile acids and statins share transporters in the liver and intestine; we observed that increased plasma concentration of simvastatin positively correlates with higher levels of several secondary bile acids. Genetic analysis of these subjects identified associations between levels of seven bile acids and a single nucleotide polymorphism (SNP), rs4149056, in the gene encoding the organic anion transporter SLCO1B1. These findings, along with recently published results that the gut microbiome plays an important role in cardiovascular disease, indicate that interactions between genome, gut microbiome and environmental influences should be considered in the study and management of cardiovascular disease. Metabolic profiles could provide valuable information about treatment outcomes and could contribute to a more personalized approach to therapy.  相似文献   

12.
Lithocholic acid (LCA), a secondary bile acid, is a vitamin D receptor (VDR) ligand. 1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the hormonal form of vitamin D, is involved in the anti-inflammatory action through VDR. Therefore, we hypothesize that LCA acts like 1,25(OH)(2)D(3) to drive anti-inflammatory signals. In present study, we used human colonic cancer cells to assess the role of LCA in regulation of the pro-inflammatory NF-kappaB pathway. We found that LCA treatment increased VDR levels, mimicking the effect of 1,25(OH)(2)D(3). LCA pretreatment inhibited the IL-1beta-induced IkappaBalpha degradation and decreased the NF-kappaB p65 phosphorylation. We also measured the production of IL-8, a well-known NF-kappaB target gene, as a read-out of the biological effect of LCA expression on NF-kappaB pathway. LCA significantly decreased IL-8 secretion induced by IL-1beta. These LCA-induced effects were very similar to those of 1,25(OH)(2)D(3.) Thus, LCA recapitulated the effects of 1,25(OH)(2)D(3) on IL-1beta stimulated cells. Mouse embryonic fibroblast (MEF) cells lacking VDR have intrinsically high NF-kappaB activity. LCA pretreatment was not able to prevent TNFalpha-induced IkappaBalpha degradation in MEF VDR (-/-), whereas LCA stabilized IkappaBalpha in MEF VDR (+/-) cells. Collectively, our data indicated that LCA activated the VDR to block inflammatory signals in colon cells.  相似文献   

13.
Vitamin D receptor (VDR) mediates vitamin D signaling involved in bone metabolism, cellular growth and differentiation, cardiovascular function, and bile acid regulation. Mice with an intestine-specific disruption of VDR (VdrΔIEpC) have abnormal body size, colon structure, and imbalance of bile acid metabolism. Lithocholic acid (LCA), a secondary bile acid that activates VDR, is among the most toxic of the bile acids that when overaccumulated in the liver causes hepatotoxicity. Because cytochrome P450 3A4 (CYP3A4) is a target gene of VDR-involved bile acid metabolism, the role of CYP3A4 in VDR biology and bile acid metabolism was investigated. The CYP3A4 gene was inserted into VdrΔIEpC mice to produce the VdrΔIEpC/3A4 line. LCA was administered to control, transgenic-CYP3A4, VdrΔIEpC, and VdrΔIEpC/3A4 mice, and hepatic toxicity and bile acid levels in the liver, intestine, bile, and urine were measured. VDR deficiency in the intestine of the VdrΔIEpC mice exacerbates LCA-induced hepatotoxicity manifested by increased necrosis and inflammation, due in part to over-accumulation of hepatic bile acids including taurocholic acid and taurodeoxycholic acid. Intestinal expression of CYP3A4 in the VdrΔIEpC/3A4 mouse line reduces LCA-induced hepatotoxicity through elevation of LCA metabolism and detoxification, and suppression of bile acid transporter expression in the small intestine. This study reveals that intestinal CYP3A4 protects against LCA hepatotoxicity.  相似文献   

14.
Our previous investigations have shown that lithocholic acid (LCA)-induced cholestasis is associated with an increased synthesis of microsomal cholesterol which is transported with LCA and incorporated in the bile canalicular membrane. As the significance of these changes remains unknown the effect of interference with microsomal protein synthesis and/or with the cellular transport of cholesterol was studied. Male Wistar rats were injected i.p. with cycloheximide at the dose of 15 micrograms/100 g BW 3 times over a 24-hour period. After cannulating the common bile duct and collecting bile for one hour, the animals were either injected i.v. with 12 mumoles C14-LCA/100 g BW or with a 7.5% albumin solution and bile was collected for another hour. LCA injection in untreated animals reduced bile flow by more than 90% of control values. In contrast, bile flow in the group treated with cycloheximide and LCA was normal and did not differ from that of animals given cycloheximide alone. Bile salt secretion rate was increased in the cycloheximide-LCA group over the control groups. This was mainly due to the secretion of more than 80% of the injected LCA and was confirmed by the distribution of the radioactivity. By electron microscopy, the liver in the cycloheximide-LCA group did not show any of the well defined changes associated with LCA-induced cholestasis. These data suggest that microsomes play an important role in the pathogenesis of LCA cholestasis and that inhibition of microsomal protein synthesis can prevent its development.  相似文献   

15.
BackgroundProgrammed death-ligand 1 (PD-L1), which can be induced by interferon-gamma (IFN-γ) in the tumor microenvironment, is a critical immune checkpoint in cancer immunotherapy. Natural products which reduce IFN-γ-induced PD-L1 might be exert immunotherapy effect. Licochalcone A (LCA), a natural compound derived from the root of Glycyrrhiza inflata Batalin. (Fabaceae), was found to interfere IFN-γ-induced PD-L1.PurposeThe aim of this study is to further clarify the effect and the mechanism of LCA on inhibiting IFN-γ-induced PD-L1 in lung cancer cells.MethodsThe expression levels of PD-L1 were evaluated by flow cytometry, western blot and qRT-PCR. Click-iT protein synthesis assay and luciferase assay were used to identify the effect of LCA on protein synthesis. Jurkat T cell proliferation and apoptosis in the co-culture system were detected by flow cytometry. Flow cytometry was also applied to evaluate reactive oxygen species (ROS) generation.ResultsLCA downregulated IFN-γ-induced PD-L1 protein expression and membrane localization in human lung cancer cells, regardless of inhibiting PD-L1 mRNA level or promoting its protein degradation. LCA decreased apoptosis and proliferative inhibition of Jurkat T cells caused by IFN-γ-induced PD-L1-expressing in A549 cells in the co-culture system. Strikingly, LCA was verified as a protein synthesis inhibitor, which reduced both cap-dependent and -independent translation. LCA inhibited PD-L1 translation, likely due to inhibition of 4EBP1 phosphorylation (Ser 65) and activation of PERK-eIF2α pathway. Furthermore, LCA induced ROS generation in a time-dependent manner in lung cancer cells. N-acetyl-L-cysteine (NAC) not only revered ROS generation triggered by LCA but also restored IFN-γ-induced expression of PD-L1. Both the inhibition of 4EBP1 phosphorylation (Ser 65) and activation of PERK-eIF2α axis triggered by LCA was restored by co-treatment with NAC.ConclusionLCA abrogated IFN-γ-induced PD-L1 expression via ROS generation to abolish the protein translation, indicating that LCA has the potential to be applied in cancer immunotherapy.  相似文献   

16.
1alpha,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], a vitamin D receptor (VDR) ligand, regulates calcium homeostasis and also exhibits noncalcemic actions on immunity and cell differentiation. In addition to disorders of bone and calcium metabolism, VDR ligands are potential therapeutic agents in the treatment of immune disorders, microbial infections, and malignancies. Hypercalcemia, the major adverse effect of vitamin D(3) derivatives, limits their clinical application. The secondary bile acid lithocholic acid (LCA) is an additional physiological ligand for VDR, and its synthetic derivative, LCA acetate, is a potent VDR agonist. In this study, we found that an additional derivative, LCA propionate, is a more selective VDR activator than LCA acetate. LCA acetate and LCA propionate induced the expression of the calcium channel transient receptor potential vanilloid type 6 (TRPV6) as effectively as that of 1alpha,25-dihydroxyvitamin D(3) 24-hydroxylase (CYP24A1), whereas 1,25(OH)(2)D(3) was more effective on TRPV6 than on CYP24A1 in intestinal cells. In vivo experiments showed that LCA acetate and LCA propionate effectively induced tissue VDR activation without causing hypercalcemia. These bile acid derivatives have the ability to function as selective VDR modulators.  相似文献   

17.
Supplement of 1% lithocholic acid (LCA) in the diet for 5-9 days resulted in elevated levels of the marker for liver damage aspartate aminotransferase and alkaline phosphatase activities in both farnesoid X receptor (FXR)-null and wild-type female mice. The levels were clearly higher in wild-type mice than in FXR-null mice, despite the diminished expression of a bile salt export pump in the latter. Consistent with liver toxicity marker activities, serum and liver levels of bile acids, particularly LCA and taurolithocholic acid, were clearly higher in wild-type mice than in FXR-null mice after 1% LCA supplement. Marked increases in hepatic sulfating activity for LCA (5.5-fold) and hydroxysteroid sulfotransferase (St) 2a (5.8-fold) were detected in liver of FXR-null mice. A 7.4-fold higher 3alpha-sulfated bile acid concentration was observed in bile of FXR-null mice fed an LCA diet compared with that of wild-type mice. Liver St2a content was inversely correlated with levels of alkaline phosphatase. In contrast, microsomal LCA 6beta-hydroxylation was not increased and was in fact lower in FXR-null mice compared in wild-type mice. Clear decreases in mRNA encoding sodium taurocholate cotransporting polypeptide, organic anion transporting polypeptide 1, and liver-specific organic anion transporter-1 function in bile acid import were detected in LCA-fed mice. These transporter levels are higher in FXR-null mice than wild-type mice after 1% LCA supplement. No obvious changes were detected in the Mrp2, Mrp3, and Mrp4 mRNAs. These results indicate hydroxysteroid sulfotransferase-mediated LCA sulfation as a major pathway for protection against LCA-induced liver damage. Furthermore, Northern blot analysis using FXR-null, pregnane X receptor-null, and FXR-pregnane X receptor double-null mice suggests a repressive role of these nuclear receptors on basal St2a expression.  相似文献   

18.
Increased bile acid secretion, as a consequence of a high fat diet, results in the increased production of bile acids that may escape the enterohepatic circulation, and be subsequently metabolised by the colonic micro-flora to form the co-mutagenic and cwarcinogenic secondary bile acids. The potential of the secondary bile acids lithocholate (LOC) and deoxycholate (DOC), to induce DNA damage, in the colonocyte cell line HT29, at physiological concentrations both individually and in a 2:l ratio was assessed. Results indicated significant levels of DNA damage induced by both bile acids, with LOC having the greater DNA damaging capacity. The potential role of vitamin A, and the antioxidant vitamin E, in reducing this damage was determined, over a range of vitamin concentrations. Both vitamins reduced the bile acid induced DNA damage. Vitamin A displayed a dose response relationship, whereas vitamin E reduced DNA damage close to negative control values at all concentrations above 50 μM. These results indicate a protective role for Vitamins A and E, against the DNA damaging capacity of LOC and DOC.  相似文献   

19.
The vitamin D receptor (VDR), a member of the nuclear receptor superfamily, mediates the biological actions of the active form of vitamin D, 1alpha,25-dihydroxyvitamin D(3). It regulates calcium homeostasis, immunity, cellular differentiation, and other physiological processes. Recently, VDR was found to respond to bile acids as well as other nuclear receptors, farnesoid X receptor (FXR) and pregnane X receptor (PXR). The toxic bile acid lithocholic acid (LCA) induces its metabolism through VDR interaction. To elucidate the structure-function relationship between VDR and bile acids, we examined the effect of several LCA derivatives on VDR activation and identified compounds with more potent activity than LCA. LCA acetate is the most potent of these VDR agonists. It binds directly to VDR and activates the receptor with 30 times the potency of LCA and has no or minimal activity on FXR and PXR. LCA acetate effectively induced the expression of VDR target genes in intestinal cells. Unlike LCA, LCA acetate inhibited the proliferation of human monoblastic leukemia cells and induced their monocytic differentiation. We propose a docking model for LCA acetate binding to VDR. The development of VDR agonists derived from bile acids should be useful to elucidate ligand-selective VDR functions.  相似文献   

20.
Consumption of reishi mushroom has been reported to prevent colon carcinogenesis in rodents, although the underlying mechanisms remain unclear. To investigate this effect, rats were fed a high-fat diet supplemented with 5% water extract from either the reishi mushroom (Ganoderma lingzhi) (WGL) or the auto-digested reishi G. lingzhi (AWGL) for three weeks. Both extracts markedly reduced fecal secondary bile acids, such as lithocholic acid and deoxycholic acid (colon carcinogens). These extracts reduced the numbers of Clostridium coccoides and Clostridium leptum (secondary bile acids-producing bacteria) in a per g of cecal digesta. Fecal mucins and cecal propionate were significantly elevated by both extracts, and fecal IgA was significantly elevated by WGL, but not by AWGL. These results suggest that the reishi extracts have an impact on colon luminal health by modulating secondary bile acids, microflora, mucins, and propionate that related to colon cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号