首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Protein disulfide isomerase (PDI) family proteins are classified as enzymatic chaperones for reconstructing misfolded proteins. Previous studies have shown that several PDI members possess potential proapoptotic functions. However, the detailed molecular mechanisms of PDI-mediated apoptosis are not completely known. In this study, we investigated how two members of PDI family, PDI and PDIA3, modulate apoptotic signaling. Inhibiting PDI and PDIA3 activities pharmacologically alleviates apoptosis induced by various apoptotic stimuli. Although a decrease of PDIA3 expression alleviates apoptotic responses, overexpression of PDIA3 exacerbates apoptotic signaling. Importantly, Bak, but not Bax, is essential for PDIA3-induced proapoptotic signaling. Furthermore, both purified PDI and PDIA3 proteins induce Bak-dependent, but not Bax-dependent, mitochondrial outer membrane permeabilization in vitro, probably through triggering Bak oligomerization on mitochondria. Our results suggest that both of PDI and PDIA3 possess Bak-dependent proapoptotic function through inducing mitochondrial outer membrane permeabilization, which provides a new mechanism linking ER chaperone proteins and apoptotic signaling.  相似文献   

2.
Integrin αDβ2 (CD11d/CD18) is a multiligand macrophage receptor with recognition specificity identical to that of the major myeloid cell-specific integrin αMβ2 (CD11b/CD18, Mac-1). Despite its prominent upregulation on inflammatory macrophages, the role of αDβ2 in monocyte and macrophage migration is unknown. In this study, we have generated model and natural cell lines expressing different densities of αDβ2 and examined their migration to various extracellular matrix proteins. When expressed at a low density, αDβ2 on the surface of recombinant HEK293 cells and murine IC-21 macrophages cooperates with β13 integrins to support cell migration. However, its increased expression on the αDβ2-expressing HEK293 cells and its upregulation by PMA on the IC-21 macrophages result in increased cell adhesiveness and inhibition of cell migration. Furthermore, ligation of αDβ2 with anti-αD blocking antibodies restores β13-driven cell migration by removing the excess αDβ2-mediated adhesive bonds. Consistent with in vitro data, increased numbers of inflammatory macrophages were recovered from the inflamed peritoneum of mice after the administration of anti-αD antibody. These results demonstrate that the density of αDβ2 is critically involved in modulating macrophage adhesiveness and their migration, and suggest that low levels of αDβ2 contribute to monocyte migration while αDβ2 upregulation on differentiated macrophages may facilitate their retention at sites of inflammation.  相似文献   

3.
Sun H  Wu Y  Qi J  Pan Y  Ge G  Chen J 《The Journal of biological chemistry》2011,286(14):12086-12092
Lymphocyte homing is regulated by the dynamic interaction between integrins and their ligands. Integrin α4β7 mediates both rolling and firm adhesion of lymphocytes by modulating its affinity to the ligand, mucosal addressin cell adhesion molecule-1 (MAdCAM-1). Although previous studies have revealed some mechanisms of α4β7-MAdCAM-1 binding, little is known about the different molecular bases of the low- and high-affinity α4β7-MAdCAM-1 interactions, which mediate rolling and firm adhesion of lymphocytes, respectively. Here, we found that two loops in immunoglobulin domains 1 and 2 (D1 and D2) of MAdCAM-1 played different roles in MAdCAM-1 binding to low-affinity (inactive) and high-affinity (activated) α4β7. The Asp-42 in the CC' loop of D1 was indispensable for MAdCAM-1 binding to both low-affinity and high-affinity α4β7. The other CC' loop residues except for Arg-39 and Ser-44 were essential for MAdCAM-1 binding to both inactive α4β7 and α4β7 activated by SDF-1α or talin, but not required for MAdCAM-1 binding to Mn2+-activated α4β7. Single amino acid substitution of the DE loop residues mildly decreased MAdCAM-1 binding to both inactive and activated α4β7. Notably, removal of the DE loop greatly impaired MAdCAM-1 binding to inactive and SDF-1α- or talin-activated α4β7, but only decreased 60% of MAdCAM-1 binding to Mn2+-activated α4β7. Moreover, DE loop residues were important for stabilizing the low-affinity α4β7-MAdCAM-1 interaction. Thus, our findings demonstrate the distinct roles of the CC' and DE loops in the recognition of MAdCAM-1 by low- and high-affinity α4β7 and suggest that the inactive α4β7 and α4β7 activated by different stimuli have distinct conformations with different structural requirements for MAdCAM-1 binding.  相似文献   

4.
5.
The cysteine-rich region (CRR) of the β2 integrin subunit was replaced by that of β1 to give the chimera β2NV1. β2NV1 can combine with αL to form a variant leukocyte-function-associated antigen (LFA)-1 on COS cell surface, suggesting that the specificity of the β2 interaction with αL does not lie in the CRR. Unlike those expressing wild-type LFA-1, COS cells expressing αLβ2NV1 are constitutively active in intercellular adhesion molecule (ICAM)-1 adhesion. These results suggest that activation of LFA-1 involves the release of an intramolecular constraint, which is maintained, in part, by the authentic β2 CRR.  相似文献   

6.
Peroxisomes have the intrinsic ability to produce and scavenge hydrogen peroxide (H2O2), a diffusible second messenger that controls diverse cellular processes by modulating protein activity through cysteine oxidation. Current evidence indicates that H2O2, a molecule whose physicochemical properties are similar to those of water, traverses cellular membranes through specific aquaporin channels, called peroxiporins. Until now, no peroxiporin-like proteins have been identified in the peroxisomal membrane, and it is widely assumed that small molecules such as H2O2 can freely permeate this membrane through PXMP2, a non-selective pore-forming protein with an upper molecular size limit of 300–600 Da. By employing the CRISPR-Cas9 technology in combination with a Flp-In T-REx 293 cell line that can be used to selectively generate H2O2 inside peroxisomes in a controlled manner, we provide evidence that PXMP2 is not essential for H2O2 permeation across the peroxisomal membrane, neither in control cells nor in cells lacking PEX11B, a peroxisomal membrane-shaping protein whose yeast homologue facilitates the permeation of molecules up to 400 Da. During the course of this study, we unexpectedly noted that inactivation of PEX11B leads to partial localization of both peroxisomal membrane and matrix proteins to mitochondria and a decrease in peroxisome density. These findings are discussed in terms of the formation of a functional peroxisomal matrix protein import machinery in the outer mitochondrial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号