首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the effects of forskolin on enterocyte membrane expression of the glucose transporters, SGLT1 and GLUT2, which are thought to be the main entry and efflux pathways for glucose, respectively. Forskolin treatment increased SGLT1 but decreased GLUT2 expression in mid and lower villus enterocytes. No change in transporter expression was noted in upper villus cells. Likewise, cyclic AMP levels were raised in mid and lower but not upper villus cells. The implications of these data for glucose transport are discussed.  相似文献   

2.
We have investigated the effects of forskolin on enterocyte membrane expression of the glucose transporters, SGLT1 and GLUT2, which are thought to be the main entry and efflux pathways for glucose, respectively. Forskolin treatment increased SGLT1 but decreased GLUT2 expression in mid and lower villus enterocytes. No change in transporter expression was noted in upper villus cells. Likewise, cyclic AMP levels were raised in mid and lower but not upper villus cells. The implications of these data for glucose transport are discussed.  相似文献   

3.
Although pigs are adapted to starch-rich diets and have high turnover rates of glucose, very scarce information is available on the molecular basis of glucose transport. Therefore, the present study attempted a systematic screening for the presence of mRNA of glucose transport proteins in main organs of glucose absorption, production and conservation. From the members of the solute carrier family SLC5A (sodium glucose cotransporter), the porcine jejunum was positive for SGLT1 and SGLT3, but also contained detectable levels of SGLT5. Liver contained SGLT1, SGLT5, traces of SGLT3 and, in one of five pigs, SGLT2. Kidney contained SGLT1, SGLT2, SGLT3, SGLT5 and hardly detectable levels of SGLT4. Skeletal muscle showed weak signals for SGLT3 and SGLT5. Screening for members of the SLC2A family (facilitated glucose transporter) in intestine revealed the presence of mRNA for GLUT1, GLUT2, GLUT5, GLUT7 and GLUT8, while GLUT3, GLUT4, GLUT10 and GLUT11 were also detectable. The liver contained GLUT1, GLUT2 and GLUT8 mRNA, while GLUT3, GLUT4, GLUT5, GLUT10 and GLUT11 were poorly detectable. The kidney was positive for GLUT1, GLUT2, GLUT5, GLUT8 and GLUT11, but traces of GLUT3, GLUT4 and GLUT10 could also be detected. Skeletal muscle had the strongest signal for GLUT4, while GLUT1, GLUT3, GLUT5, GLUT8, GLUT10 and GLUT11 showed weak signals. A total of 12 unique partial cDNA sequences were submitted to GenBank. In conclusion, this study provides molecular insight into the organ-specific expression of glucose transporters in pigs and thus sheds light on the way of glucose handling in this omnivorous species.  相似文献   

4.
5.
Oral glucose supply is important for neonatal calves to stabilize postnatal plasma glucose concentration. The objective of this study was to investigate ontogenic development of small intestinal growth, lactase activity, and glucose transporter in calves (n = 7 per group) that were born either preterm (PT; delivered by section 9 d before term) or at term (T; spontaneous vaginal delivery) or spontaneously born and fed colostrum for 4 days (TC). Tissue samples from duodenum and proximal, mid, and distal jejunum were taken to measure villus size and crypt depth, protein concentration of mucosa and brush border membrane vesicles (BBMV), total DNA and RNA concentration of mucosa, mRNA expression and activity of lactase, and mRNA expression of sodium-dependent glucose co-transporter-1 (SGLT1) and facilitative glucose transporter 2 (GLUT2) in mucosal tissue. Additionally, protein expression of SGLT1 in BBMV and GLUT2 in crude mucosal membranes and immunochemical localization of GLUT2 in the enterocytes were determined. Villus height in distal jejunum was lower in TC than in T. Crypt depth in all segments was largest and the villus height/crypt depth ratio in jejunum was smallest in TC calves. Concentration of RNA was highest in duodenal mucosa of TC calves, but neither lactase mRNA and activity nor SGLT1 and GLUT2 mRNA and protein expression differed among groups. Localization of GLUT2 in the apical membrane was greater, whereas in the basolateral membrane was lower in TC than in T and PT calves. Our study indicates maturation processes after birth for mucosal growth and trafficking of GLUT2 from the basolateral to the apical membrane. Minor differences of mucosal growth, lactase activity, and intestinal glucose transporters were seen between PT and T calves, pointing at the importance of postnatal maturation and feeding for mucosal growth and GLUT2 trafficking.  相似文献   

6.
The distribution of SGLT1 and GLUT2 hexose transporters has been evaluated in enterocytes of an isolated loop of the small intestine and Caco-2 cell culture after absorption of hexoses at their high and low concentrations. The SGLT1 transporter was found to be located in enterocytes along the edge of the intestinal villus. The GLUT2 transporter after loading with high hexose concentrations is located in the apical part of enterocytes. In culture, Caco-2 cells form a characteristic of enterocytes microvilli and the cell junction complex. During the incubation of the culture in solutions of glucose and galactose, the absorption of these sugars from the incubation medium was observed. The SGLT1 transporter in the Caco-2 cells is located in the apical and perinuclear enterocyte parts and is organized in globules. After loading with hexoses at low concentrations, the GLUT2 transporter is in the basal cell area. The Caco-2 cell culture can serve a model for studying the transport of sugar in the intestinal epithelium.  相似文献   

7.
In chronic experiments on Wistar rats, glucose and galactose absorption in the isolated loop of the small intestine considerably decreased in presence of both phloridzine am phloritine (inhibitors of the glucose transporters SGLT1 and GLUT2). The load of the isolated loop with glucose or galactose solutions scarcely influenced the absorption of 2-deoxi-D-glucose (substrate for GLUT2). According to the immunocytochemical analysis by means of confocal microscopy, after the load of the isolated loop with glucose (75 mM) the labels to GLUT2 and proteinkinase C (PKC betalI) were concentrated mainly in the apical part of the enterocytes, whereas after the load with the Ringer solution--in the basal part of the enterocytes. It was shown on the mathematical model that the part of the facilitated diffusion in the total glucose absorption was considerably lesser in comparison with the active transport mediated by SGLT1. Thus the findings support the hypothesis about a recruitment of the transporter GLUT2 into the apical membrane of the enterocytes and its involvement in glucose transfer across this membrane. However, under natural conditions, the active transport is the main mechanism of glucose absorption, whereas the facilitated diffusion plays a certain role only at high carbohydrate loads.  相似文献   

8.
9.
Summary Glucose is actively absorbed in the intestine by the action of the Na+-dependent glucose transporter. Using an antibody against the rabbit intestinal Na+-dependent glucose transporter (SGLT1), we examined the localization of SGLT1 immunohistochemically along the rat digestive tract (oesophagus, stomach, duodenum, jejunum, ileum, colon and rectum). SGLT1 was detected in the small intestine (duodenum, jejunum and ileum), but not in the oesophagus, stomach, colon or rectum. SGLT1 was localized at the brush border of the absorptive epithelium cells in the small intestine. Electron microscopical examination showed that SGLT1 was localized at the apical plasma membrane of the absorptive epithelial cells. SGLT1 was not detected at the basolateral plasma membrane. Along the crypt-villus axis, all the absorptive epithelial cells in the villus were positive for SGLT1, whose amount increased from the bottom of the villus to its tip. On the other hand, cells in the crypts exhibited little or no staining for SGLT1. Goblet cells scattered throughout the intestinal epithelium were negative for SGLT1. These observations show that SGLT1 is specific to the apical plasma membrane of differentiated absorptive epithelial cells in the small intestine, and suggest that active uptake of glucose occurs mainly in the absorptive epithelial cells in the small intestine.  相似文献   

10.
11.
To elucidate mechanisms providing transport of sugars across intestinal epithelium, on taking into account the current hypotheses (active transport, participation of paracellular transport and passive component of transcellular transport), it was important to reveal structural changes of tight junctions and distribution of the carriers of facilitated diffusion of GLUT2 and protein kinase C during absorption of glucose. On using confocal and electron microscopy, ultrastructural and immunocytochemical studies of enterocytes after perfusion of isolated rat small intestine fragment with 75 mM glucose (chronic experiment) have shown: 1) fluorescent labels of transporter GLUT2 and PKCbetaII are located in the apical area of enterocytes situated at the upper half of the villus. Antibodies against GLUT2, conjugated with gold, are revealed at the microvilli or apical membrane and in the area of terminal network; 2) no ultrastructural changes of the tight junction are detected on ultrathin sections and freeze--fracture replics. At the same time, fluorescent and gold labels against actin are concentrated in the vicinity of the lateral membrane in the tight junction area. The results obtained can serve a confirmation of a hypothesis that at high glucose concentrations GLUT2 participates in its transfer across the apical membrane.  相似文献   

12.
13.
Regulation of intestinal glucose transport by tea catechins   总被引:3,自引:0,他引:3  
Intestinal glucose uptake is mainly performed by its specific transporters, such as SGLT 1, GLUT 2 and 5 expressed in the intestinal epithelial cells. By using human intestinal epithelial Caco-2 cells we observed that intestinal glucose uptake was markedly inhibited by tea extracts. While several substances in green tea seem to be involved in this inhibition, catechins play the major role and epicatechin gallate (ECg) showed the highest inhibitory activity. Since our Caco-2 cells did not express enough amount of SGLT 1, the most abundant intestinal glucose transporter, the effect of ECg on SGLT 1 was evaluated by using brush border membrane vesicles obtained from the rabbit small intestine. ECg inhibited SGLT 1 in a competitive manner, although ECg itself was not transported via the glucose transporters. These results suggest that tea catechins could play a role in controlling the dietary glucose uptake at the intestinal tract and possibly contribute to blood glucose homeostasis.  相似文献   

14.
Hexose transporters play a pivotal role in the absorption of food-derived monosaccharides in the gastrointestinal tract. Although a basic knowledge of the hexose transporters has already been gained, their detailed distribution and comparative intensities of expression throughout the gastrointestinal tract have not been fully elucidated. In this study, we quantitatively evaluated the expression of SGLT1, GLUT1, GLUT2, and GLUT5 by in situ hybridization and real-time PCR techniques using a total of 28 segments from the gastrointestinal tract of 9-week-old mice. GLUT2 and GLUT5 mRNA expressions were detected predominantly from the proximal to middle parts of the small intestine, showing identical expression profiles, while SGLT1 mRNA was expressed not only in the small intestine but also in the large intestine. Notably, GLUT1 mRNA was expressed at a considerable level in both the stomach and large intestine but was negligible in the small intestine. Immunohistochemistry demonstrated the polarized localization of hexose transporters in the large intestine: SGLT1 on the luminal surface and GLUT1 on the basal side of epithelial cells. The present study provided more elaborate information concerning the localization of hexose transporters in the small intestine. Furthermore, this study revealed the significant expression of glucose transporters in the large intestine, suggesting the existence of the physiological uptake of glucose in that location in mice.  相似文献   

15.
An in vivo perfusion technique, using 3 intestinal loops representing the anterior, mid and posterior regions of the rat small intestine, was used to determine intestinal glucose uptake 5 days after infection with Trichinella spiralis. At high levels of infection (3,000 and 6,000 larvae/rat) net glucose absorption by the intestinal mucosa was significantly impaired in all regions of the small intestine when compared to uninfected controls. At low levels of infection (50 larvae/rat) glucose uptake by the mucosa was significantly enhanced in all 3 regions of the small intestine. Intermediate levels of infections (200-1,000 larvae/rat) also enhanced glucose uptake, but only in the anterior regions of the small intestine. When washings from the small intestine of rats infected with 50 larvae/rat were added to the perfusion fluid used on uninfected rats, glucose uptake was also significantly enhanced. These results suggest that at low levels of infection the intestinal lumen contains a metabolite which may affect the mucosal transport of glucose and the related fluxes of H2O, Na+, Cl-, and K+, in the rat intestine. Luminal [H+] and pCO2 decreased from the proximal to distal regions of the small intestine following perfusion; pO2 was significantly decreased in the proximal and distal regions.  相似文献   

16.
Free ingestion of glucose solution (200 or 400 g/l) by Wistar rats, previously starved for 18-20 Hrs, was investigated in two groups of the animals: with intact small intestine (group 1, n = 9), and a shortened small intestine following the Thiry-Wella isolation of its one third proximal part (group 2, n = 9). In the rats of the group 2, the isolated intestinal loops were perfused in chronic experiments with soulutions of different glucose concentrations to estimate a permeability of the pre-epithelial ("unstirred") layer and "true" kinetic constants of glucose active transport. The rate of glusouse ingestion was found to be 1.3-fold as high in the of rats fgroup 1 than in the rats of group 2 (p < 0.01). According to results of mathematical modeling, the rate of glucose ingestion by rats corresponds to glucose concentration in the initial solutions and to the absorbing capacity of the small intestine due to the substrate regulation of gastric emptying. The model predicts that, during free ingestion by rats of 400 g/l (2200 mM) glucose solution, the substrate concentration in the intestinal lumen under steady state conditions hardly exceeds 75 mM. This fact contradicts a recently proposed hypothesis about a facilitated transport mediated by GLUT2 as the main mechanism of glucose absorption in the small intestine under normal conditions.  相似文献   

17.
Milk-borne insulin-like growth factors (IGFs) enhance nutrient absorption in the immature intestine, which is characterized by low levels of glucose oxidation. We therefore hypothesized that feeding a rat milk substitute (RMS) devoid of growth factors to rat pups would lower serum glucose levels relative to dam-fed control rats and that supplementation of RMS with physiological doses of either IGF-I or IGF-II would normalize serum glucose levels via increased jejunal glucose transporter 2 (GLUT2) and high-affinity Na(+)-glucose cotransporter (SGLT1) expression. We found lower serum glucose concentrations in RMS-fed pups; in contrast, serum glucose levels in the IGF-supplemented pups were similar to those of dam-fed controls. RT-PCR and laser scanning confocal microscopy similarly demonstrated that IGF supplementation increased expression of jejunal glucose transporters. Further experiments demonstrated that IGF supplementation altered mRNA levels of key mitochondrial enzymes without altering jejunal lactase activity. We conclude that IGF-I and IGF-II supplementation increases serum glucose levels in the immature rat pup fed artificial formula and alters gene expression of the jejunal glucose transporters.  相似文献   

18.
Lipopolysaccharide (LPS) endotoxin is a causative agent of sepsis. The aim of this study was to examine LPS effects on intestinal fructose absorption and to decipher mechanisms. Sepsis was induced by intravenous injection of LPS in rabbits. The ultrastructural study and DNA fragmentation patterns were identical in the intestine of LPS and sham animals. LPS treatment reduced fructose absorption altering both mucosal-to-serosal transepithelial fluxes and uptake into brush border membrane vesicles (BBMVs). Cytochalasin B was ineffective on fructose uptake, indicating that GLUT5, but not GLUT2, transport activity was targeted. GLUT5 protein levels in BBMvs were lower in LPS than in sham-injected rabbits. Thus lower fructose transport resulted from lower levels of GLUT5 protein. LPS treatment decreased GLUT5 levels by proteasome-dependent degradation. Specific inhibitors of PKC, PKA, and MAP kinases (p38MAPK, JNK, MEK1/2) protected fructose uptake from adverse LPS effect. Moreover, a TNF-alpha antagonist blocked LPS action on fructose uptake. We conclude that intestinal fructose transport inhibition by LPS is associated with diminished GLUT5 numbers in the brush border membrane of enterocytes triggered by activation of several interrelated signaling cascades and proteasome degradation.  相似文献   

19.
Three hexose transporter genes, the Na(+)/glucose cotransporters SGLT1 and SGLT3 (formerly SAAT1/pSGLT2) and the facilitative transporter GLUT1, are expressed in a renal epithelial cell line with proximal tubule characteristics. A number of studies have demonstrated that SGLT1 expression is coupled to the cellular differentiation state and is also negatively regulated by its substrate glucose. In the present study, we demonstrate that SGLT3 mRNA expression is relatively unaffected by conditions promoting dedifferentiation (reseeding to a subconfluent density, activation of protein kinase C) or differentiation (confluent cell density, activation of protein kinase A) nor was expression sensitive to hyperglycemic glucose levels in the medium. We further demonstrate that protein kinase A and protein kinase C exert opposing effects on GLUT1 and SGLT1 mRNA levels in polarized cell monolayers, indicating that GLUT1 mRNA is also highly regulated in polarized epithelial cells by agents affecting cell differentiation. The relatively constitutive expression of SGLT3 mRNA suggests a novel role for this low-affinity Na(+)/glucose cotransporter, to provide concentrative glucose uptake under hyperglycemic conditions where expression of high-affinity glucose cotransporter SGLT1 mRNA is significantly downregulated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号