首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Zádor E  Fenyvesi R  Wuytack F 《FEBS letters》2005,579(3):749-752
This study investigates to what extent the expression of the slow myosin heavy chain (MyHCI) isoform and the slow type sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) isoform are co-regulated in fibers of regenerating skeletal soleus muscle. Both overexpression of cain, a calcineurin inhibitor, or partial tenotomy prevented the expression of MyHCI but left SERCA2a expression unaffected in fibers of regenerating soleus muscles. These data complement those from different experimental models and clearly show that the expression of MyHCI and SERCA2a--the major proteins mediating, respectively, the slow type of contraction and relaxation--are not coregulated in regenerating soleus muscle.  相似文献   

2.
3.
Sca-1 (Stem Cell Antigen-1) is a member of the Ly-6 family proteins that functions in cell growth, differentiation, and self-renewal in multiple tissues. In skeletal muscle Sca-1 negatively regulates myoblast proliferation and differentiation, and may function in the maintenance of progenitor cells. We investigated the role of Sca-1 in skeletal muscle regeneration and show here that Sca-1 expression is upregulated in a subset of myogenic cells upon muscle injury. We demonstrate that extract from crushed muscle upregulates Sca-1 expression in myoblasts in vitro, and that this effect is reversible and independent of cell proliferation. Sca-1−/− mice exhibit defects in muscle regeneration, with the development of fibrosis following injury. Sca-1−/− muscle displays reduced activity of matrix metalloproteinases, critical regulators of extracellular matrix remodeling. Interestingly, we show that the number of satellite cells is similar in wild-type and Sca-1−/− muscle, suggesting that in satellite cells Sca-1 does not play a role in self-renewal. We hypothesize that Sca-1 upregulates, directly or indirectly, the activity of matrix metalloproteinases, leading to matrix breakdown and efficient muscle regeneration. Further elucidation of the role of Sca-1 in matrix remodeling may aid in the development of novel therapeutic strategies for the treatment of fibrotic diseases.  相似文献   

4.
5.
6.
The apoptotic proteases, including caspases and granzyme B, have independent evolutionary origins, yet are both highly specific for cleavage after aspartic acid residues and cleave many of the same substrates at closely spaced sites. In addition, many of these substrates are also reversibly regulated during other processes such as the cell cycle. In these studies, we have identified a novel domain (the MPAC domain: Mitotically Phosphorylated, Apoptotically Cleaved) present at the N-terminus of Ufd2a, which is regulated both by cleavage during cell death, and by phosphorylation during mitosis. We have also identified a corresponding domain, at the C-terminus of polyA polymerase (PAP), which is similarly regulated by phosphorylation during mitosis and is delineated by an apoptotic protease cleavage site. The positioning of the apoptotic cleavage site suggests that it represents a novel connector between the regulatory domain and its functional partner(s), providing insights into the structure and function that guided the evolution of the apoptotic proteases.  相似文献   

7.
Apoptosis repressor with caspase recruitment domain (ARC) is a unique anti-apoptotic protein with a distinct tissue distribution. In addition, unlike most anti-apoptotic proteins which act on one pathway, ARC can inhibit apoptosis mediated by both the death-receptor and mitochondrial signaling pathways. In this study, we confirm previous reports showing high levels of ARC protein in rat heart and skeletal muscle, but demonstrate for the first time that ARC is also expressed in rat aorta. Immunoblot analysis on endothelium-denuded aorta as well as immunohistochemical analysis on intact aorta demonstrated that ARC was highly expressed in smooth muscle. Immunoblot analysis also found that ARC protein was severely downregulated in skeletal muscle (−82%; < 0.001), heart (−80%; < 0.001), and aorta (−71%; < 0.001) of spontaneously hypertensive rats (SHR) compared to normotensive Wistar-Kyoto (WKY) rats. Decreased ARC levels were also confirmed in tissues of hypertensive animals by immunohistochemical analysis. Collectively, this data suggests that ARC protein is expressed in vascular smooth muscle and is significantly reduced in several target tissues during hypertension.  相似文献   

8.
9.
p73, a p53-related gene, is essential for a development of animals, while p53 is important for tumor formation. And little is known about the target genes specifically regulated by p73. Identifying the specific targets of p73 is important to understand the physiological roles of p73. To identify the genes specifically regulated by p73, we conducted serial analysis of gene expression to quantitatively evaluate messenger RNA populations. We found that the gene for phosphatidic acid phosphatase 2a (PAP2a), an enzyme that hydrolyzes lipids to generate diacylglycerol, was specifically upregulated by ectopic production of p73beta. The promoter region of this gene contains an element that is functionally responsive to p73beta. And the quantity of PAP2a protein was upregulated by ectopic production of p73beta. These results suggest that the expression of PAP2a is directly regulated by p73.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号