首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel naphthalene-2,3-diamine-2-salicylaldehyde (NS) ligand and its mononuclear copper(II) complex (CuNS) have been synthesized and structurally characterized. The UV–vis absorption and emission spectra of NS showed obvious changes on addition of Cu2+ solution. The interaction of the compounds with calf thymus DNA and G-quadruplex DNA were investigated by spectroscopic methods and thermal melting assay. The nucleolytic cleavage activity of the compounds was investigated on double-stranded circular pBR322 plasmid DNA and G-quadruplex DNA by electrophoretic mobility shift assay. The results show that CuNS has a greater ability to stabilize G-quadruplex DNA over calf-thymus DNA. The cytotoxicity of the compounds toward HpeG2 cancer cells was also studied, and they showed significant potential for antineoplastic effects.  相似文献   

2.
Polar phenanthrene-based tylophorine derivatives (PBTs) were designed, synthesized and evaluated as potential antitumor agents. These compounds contain a core phenanthrene structure and can be synthesized efficiently in excellent yield. The newly synthesized PBTs were evaluated for cytotoxic activity against the A549 human cancer cell line. Among them, N-(2,3-methylenedioxy-6-methoxy-phenanthr-9-ylmethyl)-L-2-piperidinemethanol (34) and N-(2,3-methylenedioxy-6-methoxy-phenanthr-9-ylmethyl)-5-aminopentanol (28) showed the highest potency with IC50 values of 0.16 and 0.27 microM, respectively, which are comparable to those of currently used antitumor drugs. A structure-activity relationship (SAR) study was also explored to facilitate the further development of this new compound class.  相似文献   

3.
A rationale based upon coenzyme Q10 (CoQ10, ubiquinone) for the synthesis of potential antitumor agents constitutes a new approach in the search toward chemotherapy of cancer. The antitumor activities of 38 alkyl-1,4-benzoquinones, analogs of coenzyme Q, 24 of which are new compounds, are described. The 10 best antitumor analogs of CoQ all showed long-term cures of Walker carcinosarcoma 256 in rats. Particularly impressive were the 6-n-octylmercapto-5-chloro-2,3-dimethoxy-1,4-benzoquinone (NSC 252188), which cured six out of six rats with % TC = 584 at 3.13 mg/kg, 6-phytyl-5-hydroxy-2,3-dimethoxy-1,4-benzoquinone (NSC 277818) (four out of four cures, % TC = 923 at 50 mg/kg), and 5-phytyl-2,3-dimethoxy-1,4-benzoquinone (NSC 276371) (three out of six cures, % TC = 789 at 0.78 mg/kg). In general, a 5-chloro or 5-hydroxy group on the quinone nucleus or a side chain with unsaturation and branching, such as the phytyl side chain of NSC 277818 and NSC 276371, seemed to increase antitumor activity. Although a perfect correlation was not to be expected, many of the most potent antitumor analogs were also among the best in vitro inhibitors of the mitochondrial CoQ10-enzymes, succinoxidase, and NAD oxidase.  相似文献   

4.
We have synthesized a series of polymethoxylated rigid analogs of combretastatin A-4 which contain a benzoxepin ring in place of the usual ethylene bridge present in the natural combretastatin products. The compounds display antiproliferative activity when evaluated against the MCF-7 and MDA human breast carcinoma cell lines. 5-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-2,3-dihydro-benzoxepine (11g) was found to be the most potent product when evaluated against the MCF-7 breast cancer cell line. A brief computational study of the structure–activity relationship for the synthesized compounds is presented. These 4,5-diarylbenzoxepins are identified as potentially useful scaffolds for the further development of antitumor agents which target tubulin.  相似文献   

5.
Poly(vinyl alcohol) (PVA) substituted with oleyl chains and tetraethyleneglycol monoethyl ether chains (TEGMEE) at 1.5% and 1% degrees of substitution respectively (mol of substituent to mol of hydroxyvinyl monomer) has previously been shown to self-assemble in water, providing aggregates selectively cytotoxic toward tumor cells vs normal cells. These polymers have also been shown to increase the long-term survival of nude mice injected with both human and murine neuroblastoma cell lines. In the present work, we changed the substitution degree of the oleyl chains on the poly(vinyl alcohol) backbone and maintained constant at 1% the degree of TEGMEE substitution. We evaluated the main physicochemical characteristics of the final polymers, their cytotoxicity toward tumor cells, and their complexing ability for hydrophobic molecules. The aim was to investigate the possibility of improving intrinsic antitumor efficacy of the polymer by changing the degree of oleyl chain substitution and further increase activity by complexation with antitumor drugs. The polymers were prepared at oleyl chain substitution degrees ranging from 0.5 to 3% (mol of substituent to mol of hydroxyvinyl monomer). The most active was again the 1.5% substituted polymer. It was further characterized by exhibiting the highest complexing ability toward hydrophobic molecules allowing the formation of a complex with fenretinide (HPR). The polymer-HPR complex was stable in aqueous environment and released the free drug prevalently in the presence of fluid hydrophobic phases. It was cytotoxic toward tumor cells with minimal activity toward normal cells. Antitumor activity exceeded that of the separate complex components resulting from the concomitant effect of the polymer and the HPR solubilized by complexation.  相似文献   

6.
A number of 1,2-bis(diphenylphosphino)ethane monomeric platinum(II) and palladium(II) complexes have been synthesized in light of their potential antitumor activity. The metal center is coordinated with a number of carboxylate anions in the cis-configuration. These complexes have been characterized by elemental analysis, conductivity measurement, and various spectroscopic techniques [IR and 195Pt NMR]. In vivo screening tests for activity of these complexes were performed against the L1210/0 murine leukemia cancer model, but none displayed a significant level of antitumor activity.  相似文献   

7.
We have prepared a set of heterocyclic benzimidazole derivatives bearing amidino substituents at C-5 of benzimidazole ring, by introducing various heterocyclic nuclei (pyridine, N-methyl-pyrrole or imidazole) at C-2, and evaluated their antitumor and antiviral activities. The most pronounced antiproliferative activity was shown with compounds 6 and 9, having imidazolinylamidino-substituent. Interestingly, all compounds show noticeable selectivity toward breast cancer cell line MCF-7. The most distinct and selective antiviral activity toward coxsackieviruses and echoviruses was observed with compounds having pyridine ring at C-2. Especially interesting was fairly strong activity of 4 and 8 toward adenoviruses, which could be considered as leads against adenoviral replication.  相似文献   

8.
Artemisinin and its derivatives, which have been known as antimalarial drugs, have also demonstrated their cytotoxicity against tumor cells. It has been proposed that antitumor activity depends on the lipophilicity of functional group on artemisinin derivatives. Solution structures of two artemisinin derivatives as antitumor drug candidates, deoxoartemisinin and carboxypropyldeoxoartemisinin, were determined by NMR spectroscopy to elucidate structure-activity relationship. According to biological assay, antitumor efficiencies are not dependent upon lipophilicity. Instead, these compounds demonstrated their distinctive structural features of boat/chair conformation and capability to interact with receptors, as they have different efficiencies on antitumor activity. Especially, carboxypropyl moiety or carbonyl moiety in artemisinin derivatives influences the conformation and stability of ring structure. Although the detailed mechanism of antitumor activity by artemisinin derivatives has not been addressed, we suggest that antitumor activity is not determined only with lipophilicity and that artemisinin derivatives have specific target proteins in each type of cancer.  相似文献   

9.
The dysfunction and mutual compensatory activation of RAF-MEK-ERK and PI3K-PDK1-AKT pathways have been demonstrated as the hallmarks in several primary and recurrent cancers. The strategy of concurrent blocking of these two pathways shows clinical merits on effective cancer therapy, such as combinatory treatments and dual-pathway inhibitors. Herein, we report a novel prototype of dual-pathway inhibitors by means of merging the core structural scaffolds of a MEK1 inhibitor and a PDK1 inhibitor. A library of 43 compounds that categorized into three series (Series I–III) was synthesized and tested for antitumor activity in lung cancer cells. The results from structure-activity relationship (SAR) analysis showed the following order of antitumor activity that 3-hydroxy-5-(phenylamino) indolone (Series III)?>?3-alkenyl-5-(phenylamino) indolone (Series I)?>?3-alkyl-5-(phenylamino) indolone (Series II). A lead compound 9za in Series III showed most potent antitumor activity with IC50 value of 1.8?±?0.8?µM in A549 cells. Moreover, antitumor mechanism study demonstrated that 9za exerted significant apoptotic effect, and cellular signal pathway analysis revealed the potent blockage of phosphorylation levels of ERK and AKT in RAF-MEK-ERK and PI3K-PDK1-AKT pathways, respectively. The results reported here provide robust experimental basis for the discovery and optimization of dual pathway agents for anti-lung cancer therapy.  相似文献   

10.
Novel series of 1-(arenesulfonyl)imidazolidin-2-one (3a-i) and 1,3-bis(arenesulfonyl)imidazolidin-2-one (5a-i) have been synthesized and tested for their antitumor activity against 60 tumor cell lines taken from nine different organs. A significant inhibition for cancer cells was observed with series 5a-i compounds compared with the series 3a-i which showed a weak inhibition. Compounds 5a-i showed good inhibitory effect at the lung cancer HOP-92 and renal cancer CAKI-1 and UO-31 cell lines. Compound 5e showed remarkable broad-spectrum antitumor activity.  相似文献   

11.
Bis-2,3-heteroarylmaleimides and polyheterocondensed imides joined through nitrogen atoms of the N,N'-bis(ethyl)-1,3-propanediamine linker were prepared from substituted maleic anhydrides and symmetrical diamines in good to satisfactory yields and short reaction times using microwave heating. The novel molecules were shown to inhibit proliferation of human tumor cells (NCI-H460 lung carcinoma) and rat aortic smooth muscle cells (SMCs) with variable potencies. Compound 11a, the most potent one of the series, showed IC(50) values comparable to those observed for the leading molecule elinafide in both cell lines, but with a higher selectivity toward human tumor cells. Compound 11a affected G1/S phase transition of the cell cycle, showed in vitro DNA intercalating activity and in vivo antitumor activity. A thorough structural analysis of the 11a-DNA complex was also made by mean of NMR and computational techniques.  相似文献   

12.
The chemical transformation of the tricyclic furo[2,3-d]pyrimidines was performed under isosteric and scaffold-hopping strategies focusing on the synthesis of its arylidene and imine-containing derivatives. Naturally-occurring alkaloids mackinazolinone and isaindigotone were as templates of target heterocycles. Synthesized compounds evaluated for their antitumor activity on human cancer cervical HeLa, breast MCF-7, and colon HT-29 cell lines. Four compounds: 8c , 8e , 10b , and 10c demonstrated potency against HeLa and HT-29 cell lines, and IC50 values were between 7.37–13.72 μM, respectively. The molecular docking results showed that compounds 8c and 10b had good binding and high matching with the target EGFR protein.  相似文献   

13.
2,3-Indolinedione derivatives have been identified as a novel class of promising agents for cancer treatment. In this study, eighteen 2,3-indolinedione derivatives were designed and synthesized, and their anticancer activities against mantle cell lymphoma (MCL) cells were evaluated. Most of them exhibited significant antiproliferative activity against the tested cell lines, and compound K5 was the most potent (MCL cellular IC50 = 0.4–0.7 μM). Further, compound K5 could induce cell apoptosis and cell cycle arrest in G2/M phase. Additionally, the results of drug-likeness analysis demonstrated that these novel 2,3-indolinedione derivatives could have potential as novel treatment strategies for MCL.  相似文献   

14.
New series of furan–thiazole hybrids (3a-f), thiazolo[2,3-c]-1,2,4-triazines (4a-f), their bioisosteres 1,3,4-thiadiazolo[2,3-c]-1,2,4-triazines (8a-d) and 1,2,4-triazino[4,3-b]-1,2,4-triazines (13a-e) were designed, synthesized and evaluated for their in vitro antitumor activities at the National Cancer Institute (NCI, USA). Among the synthesized compounds, 3d was found to exhibit promising broad spectrum antitumor activity (GI50 MG-MID = 14.22 µM) in a five-dose assay against the full panel NCI-cancer cell lines. 3d displayed higher antitumor activity against most tested cancer cell lines than 5-FU as reference. COMPARE analysis and molecular electrostatic potential computational study revealed that 3d probably exerts its antitumor properties through DNA binding similar to Clomesone. Further DNA binding studies using fluorescent terbium (Tb+3) probe revealed increased fluroresence of DNA-3d-Tb+3 mixture due to damage of the double-stranded DNA. Also, UV–vis absorption study was conducted which showed hyperchromic shift in DNA absorption confirming 3d-induced DNA damage. The assessed potency of 3d-induced DNA damage of calf thymus DNA showed a concentration as low as 2.04 ng/mL for a detectable DNA damage. Moreover, in silico calculation of physicochemical properties and druglikeness were in compliance to Lipinski’s rule.  相似文献   

15.
The antitumor activity of forty nine different metal complexes of the first transition series against mouse leukemia L 1210 cells and of two of the complexes against Ehrlich ascites carcinoma have been tested in vitro by the method described in this paper. Eight complexes showed a 50% inhibition of tumor cell division at concentration level 5–6 μg/ml of the complex for the former and two most effective complexes also for the latter. The trans-bis-(salicylaldoximato)copper(II) and trans-bis(resorcylaldoximato)copper(II) complexes were found to possess the highest antitumor activity.  相似文献   

16.
A list of diethynylfluorenes and their gold(I) derivatives have been studied for their antitumor activity as a function of their structure–activity relationships. End-capping the fluoren-9-one unit with gold(I) moieties could significantly strengthen the cytotoxic activity in vitro on three human cancer cell lines with induction of reactive oxygen species generation on Hep3B hepatocellular carcinoma cells and exhibit attractive antitumor activity from in vivo nude mice Hep3B xenograft model with limited adverse effects on vital organs including liver and kidney.  相似文献   

17.
Gemcitabine (2',2'-difluorodeoxycytidine, dFdC) is a difluorine-substituted deoxycytidine analogue that has demonstrated antitumor activity against solid tumors. The pharmacokinetics of dFdC and its metabolite, 2',2'-difluorodeoxyuridine (dFdU) have been studied; however, their disposition has never been evaluated in a patient with bladder cancer. A patient with bladder cancer was treated with dFdC 1000 mg/m(2) over a 30min period. The patient received a dFdC infusion once per week for 3 weeks followed by a rest week. Serial plasma samples were obtained prior to, during, and after completion of the infusion for determination of dFdC and dFdU concentrations. dFdC and dFdU concentrations were measured using normal-phase high-performance liquid chromatography and one-compartment open model methods. Maximum plasma concentrations (C(max)) and area under the plasma concentration-time curve for dFdC and dFdU were 24.5 microg/ml and 11200 microg/Lh, 49.1 microg/ml and 272,800 microg/Lh, respectively.  相似文献   

18.
A series of new 1,4-diarylimidazol-2(3H)-one derivatives and their 2-thione analogues has been prepared and evaluated in vitro for antitumor activity against the NCI human cancer cell panel. Compounds bearing a 3,4,5-trimethoxyphenyl ring linked to either N-1 or C-4 position of the imidazole core demonstrated an interesting profile of cytotoxicity with preferential activity against leukemic cell lines. Compound 13 exhibited a potent antitumor activity against MOLT-4 (GI(50)=20 nM) and SR (GI(50)=32 nM) cell lines.  相似文献   

19.
A series of potential DNA-binding antitumor agents, 3-[omega-(alkylamino)alkyl]-6-nitro-thiadiazino[3,4,5-kl]acridines 12 and 1,3-di[omega-(alkylamino)alkyl]-6-nitro-thiadiazino[3,4,5-kl]acridines 13, has been prepared by cyclization with SOCl(2) of 1-[[omega-(alkylamino)alkyl]amino]-9-imino-4-nitro-9,10-dihydroacridines 16 or 1-[[omega-(alkylamino)alkyl]amino]-9-[omega-(alkylamino)alkyl]imino-4-nitro-9,10-dihydroacridines 17, respectively. The non-covalent DNA-binding properties of 12, 13 have been examined using a fluorometric technique. In vitro cytotoxic potencies of these derivatives toward six tumor cell lines, including human colon adenocarcinoma (HT29) and human ovarian carcinoma (A2780 sensitive, A2780cisR cisplatin-resistant, CH1, CH1cisR cisplatin-resistant, and SKOV-3) cells, are described and compared to that of reference drugs. In vivo antitumor activity of some selected derivatives, endowed with relevant cytotoxic activity against murine leukemia P388 are reported. The 3-[2-(dimethylamino)ethyl]-6-nitro-2,7-dihydro-3H-2 lambda(4)-thiadiazino[3,4,5-kl]acridin-2-one (12d) has been identified as a new lead in the development of anticancer tetracyclic acridine derivatives.  相似文献   

20.
Members of the aureolic acid family are tricyclic polyketides with antitumor activity which are produced by different streptomycete species. These members are glycosylated compounds with two oligosaccharide chains of variable sugar length. They interact with the DNA minor groove in high-GC-content regions in a nonintercalative way and with a requirement for magnesium ions. Mithramycin and chromomycins are the most representative members of the family, mithramycin being used as a chemotherapeutic agent for the treatment of several cancer diseases. For chromomycin and durhamycin A, antiviral activity has also been reported. The biosynthesis gene clusters for mithramycin and chromomycin A3 have been studied in detail by gene sequencing, insertional inactivation, and gene expression. Most of the biosynthetic intermediates in these pathways have been isolated and characterized. Some of these compounds showed an increase in antitumor activity in comparison with the parent compounds. A common step in the biosynthesis of all members of the family is the formation of the tetracyclic intermediate premithramycinone. Further biosynthetic steps (glycosylation, methylations, acylations) proceed through tetracyclic intermediates which are finally converted into tricyclic compounds by the action of a monooxygenase, a key event for the biological activity. Heterologous expression of biosynthetic genes from other aromatic polyketide pathways in the mithramycin producer (or some mutants) led to the isolation of novel hybrid compounds.Felipe Lombó and Nuria Menéndez have equally contribute to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号