首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant carotenoid cleavage dioxygenase (CCD) catalyses the formation of industrially important apocarotenoids. Here, we applied codon-based classification for 72 CCD genes from 35 plant species using hierarchical clustering analysis. The codon adaptation index (CAI) and relative codon bias (RCB) were utilized to estimate the level of gene expression. The codon-based cluster tree result shows neatly clustered subclass of CCD genes except BoCCD1 gene of Bixa orellana. Correlation analysis of CAI values with RCB indicates an overall low-level expression of CCD across different species. Similarly, the closeness in the codon cluster with same CAI values was not reflected in 3-D structural report of selected CCD genes. These finding not only enhances our insights into the classification of CCD gene across the species but also identifies the critical factors responsible for this variation, which could aid in prediction of gene expression and function for newly reported CCD genes.  相似文献   

2.
3.
4.
The interaction between mouse angora-Y (Fgf5 go-Y) and hairless (hr) genes have been studied. Homozygous mutant gene Fgf5 go-Y increases length of all hair types, while homozygotes for the h gene lose hair completely starting on day 14 after birth. We obtained mice with genotypes +/+ hr/hr F2, +/Fgf5 go-Y hr/hr and Fgf5 go-Y/Fgf5 go-Y hr/hr. Both +/Fgf5 go-Y hr/hr and +/+ hr/hr mice began to loose hair from their heads on day 14. This further extended on the whole body. On day 21 the mice were completely deprived of hair. Therefore a single dose of gene Fgf5 go-Y does not modify alopecia in mice homozygous for hr. However in double homozygotes Fgf5 go-Y/Fgf5 go-Y hr/hr alopecia started 4 days later, namely on day 18. It usually finished 10–12 days after detection of first bald patches. On days 28–30 double homozygotes lose coat completely. Hair loss in double homozygous mice was 1.5-fold slower than in +/+ hr/hr mice. This resulted from a significant extension of anagen phase induced by a mutant homozygous gene Fgf5 go-Y in morphogenesis of the hair follicle. The hr gene was expressed at the transmission phase from anagen to catagen. Our data shows that the angora gene is a modifier of the hairless gene and this results in a strong repression of alopecia progression in double homozygous mice compared to +/+ hr/hr animals.  相似文献   

5.
The interaction of the mutant genes wellhaarig (we) and waved alopecia (wal) in mice was earlier demonstrated in our laboratory. The we gene significantly accelerates the appearance of alopecia in double we/wewal/wal homozygotes as compared to that in single +/+wal/wal homozygotes. It has been found in this work that the mutant gene angora-Y (Fgf5 go-Y ) weakens the effect of interaction of the we and wal genes. The first signs of alopecia appear in mice of the we/wewal/wal genotype at the age of 14 days, in triple Fgf5 go-Y /Fgf5 go-Y we/wewal/wal homozygotes alopecia is observed seven days later, i. e., in 21-day-old animals. The progression of alopecia in triple homozygotes is expressed to a lesser degree than in double +/+we/wewal/wal homozygotes. A single dose of the Fgf5 go-Y gene also decreases the effect of interaction of the we and wal genes, but less than a double dose of this gene. The first signs of alopecia in mice of the +/Fgf5 go-Y we/wewal/wal genotype appear only three days later than in double +/+we/wewal/wal homozygotes. The data obtained demonstrate that the Fgf5 go-Y gene is a powerful modifier of mutant genes determining the process of alopecia.  相似文献   

6.
The oomycete pathogens produce important diseases in many plant species. To identify extensin genes expressed during the oomycete Phytophthora nicotianae-Nicotiana megalosiphon interaction, we used the SuperSAGE technology. Using this approach, we detected a N. megalosiphon extensin gene (NmEXT) triggered during the interaction. The extensin gene accumulation induced by the pathogen correlated with disease resistance in different Nicotiana species. Transient expression of NmEXT gene in susceptible Nicotiana tabacum enhanced the resistance to P. nicotianae. Our date indicated that NmEXT gene served a positive role in N. tabacum resistance against P. nicotianae.  相似文献   

7.

Background

Numerous cases of predator-induced polyphenisms, in which alternate phenotypes are produced in response to extrinsic stimuli, have been reported in aquatic taxa to date. The genus Daphnia (Branchiopoda, Cladocera) provides a model experimental system for the study of the developmental mechanisms and evolutionary processes associated with predator-induced polyphenisms. In D. pulex, juveniles form neckteeth in response to predatory kairomones released by Chaoborus larvae (Insecta, Diptera).

Results

Previous studies suggest that the timing of the sensitivity to kairomones in D. pulex can generally be divided into the embryonic and postembryonic developmental periods. We therefore examined which of the genes in the embryonic and first-instar juvenile stages exhibit different expression levels in the presence or absence of predator kairomones. Employing a candidate gene approach and identifying differentially-expressed genes revealed that the morphogenetic factors, Hox3, extradenticle and escargot, were up-regulated by kairomones in the postembryonic stage and may potentially be responsible for defense morph formation. In addition, the juvenile hormone pathway genes, JHAMT and Met, and the insulin signaling pathway genes, InR and IRS-1, were up-regulated in the first-instar stage. It is well known that these hormonal pathways are involved in physiological regulation following morphogenesis in many insect species. During the embryonic stage when morphotypes were determined, one of the novel genes identified by differential display was up-regulated, suggesting that this gene may be related to morphotype determination. Biological functions of the up-regulated genes are discussed in the context of defense morph formation.

Conclusions

It is suggested that, following the reception of kairomone signals, the identified genes are involved in a series of defensive phenotypic alterations and the production of a defensive phenotype.
  相似文献   

8.
Dicer, Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) comprise the core components of RNA-induced silencing complexes, which trigger RNA silencing. Here, we performed a complete analysis of the cucumber Dicer-like, AGO, and RDR gene families including the gene structure, genomic localization, and phylogenetic relationships among family members. We identified seven CsAGO genes, five CsDCL genes, and eight CsRDR genes in cucumber. Based on phylogenetic analysis, each of these genes families was categorized into three or four clades. The orthologs of CsAGOs, CsDCLs, and CsRDRs were identified in apple, peach, wild strawberry, foxtail millet, and maize, and the evolutionary relationships among the orthologous gene pairs were investigated. We also investigated the expression levels of CsAGOs, CsDCLs, and CsRDRs in various cucumber tissues. All CsAGOs were relatively higher upregulated in leaves and tendrils than in other organs, especially CsAGO1c, CsAGO1d, and CsAGO7. All CsDCL genes were relatively higher upregulated in tendrils, with almost no expression detected for CsDCL1, CsDCL4a, or CsDCL4b in other organs. In addition, CsRDR1a, CsRDR2, CsRDR3, and CsRDR6 had relatively higher upregulation in tendrils, whereas almost all CsRDRs were downregulation in other organs. The results of this study will facilitate further studies of gene silencing pathways in cucumber.  相似文献   

9.
10.
Environmental pollution by toxic heavy metals may lead to the possible contamination of the rice plant (Oryza sativa L.). Although gene expression analysis through real-time quantitative PCR (RT-qPCR) has increased our knowledge about biological responses to heavy metals, gene network that mediates rice plant responses to heavy metal stress remains elusive. In such scenario, validation of reference gene is a major requirement for successful analyzes involving RT-qPCR. In this study, we analyzed the expression stability of eight commonly used housekeeping genes (GAPDH, Actin, eIF-4α, UBQ 5, UBQ 10, UBC, EF-1α and β-TUB) in rice leaves exposed to four kinds of heavy metals (Zn, Cu, Cd and Pb). The expression stability of these genes was determined using geNorm, NormFinder, BestKeeper and RefFinder algorithms. The results showed that UBQ 10 and UBC were the most stable reference genes across all the tested samples. We measured the expression profiles of the heavy metal-inducible gene O. sativa METALLOTHIONEIN2b (OsMT2b) using the two most stable and one least stable reference genes in all samples. The relative expression of OsMT2b varied greatly according to the different reference genes. Our results may be beneficial for future studies involving the quantification of relative gene expression levels in rice plants.  相似文献   

11.

Objectives

To investigate gene expression profiles of the thermotolerant yeast Saccharomyces cerevisiae strain KKU-VN8, a potential high-ethanol producer, in response to various stresses during high-temperature ethanol fermentation using sweet sorghum juice (SSJ) under optimal conditions.

Results

The maximal ethanol concentration obtained by S. cerevisiae KKU-VN8 using SSJ at 40 °C was 66.6 g/l, with a productivity of 1.39 g/l/h and a theoretical ethanol yield of 81%. Quantitative RT-PCR assays were performed to investigate the gene expression profiles of S. cerevisiae KKU-VN8. Differential expression of genes encoding heat-shock proteins (HSP82, HSP104, SSA4), genes involved in trehalose metabolism (TPS1, TPS2, NTH1) and genes involved the glycolytic pathway (ADH1, ADH2, CDC19) at various time points during fermentation was observed. The expression levels of HSP82, HSP104, SSA4, ADH1 and CDC19 were significantly higher than those of the controls (10.2-, 4-, 8-, 8.9- and 5.9-fold higher, respectively). In contrast, the expression levels of TPS1, TPS2, NTH1 and ADH2 were approx. 2-fold less than those of the controls.

Conclusions

The highly expressed genes encoding heat-shock proteins, HSP82 and SSA4, potentially play an important role in helping S. cerevisiae KKU-VN8 cope with various stresses that occur during high-temperature fermentation, leading to higher ethanol production efficiency.
  相似文献   

12.
Polyphenols are secondary metabolites widely present in plants which benefit to human health. In the present study we analyzed the changes of polyphenol contents during strawberry fruit development as well as changes of polyphenol oxidase (PPO). The results depicted that the polyphenol content showed a decreasing trend with the fruit development. The pH value impacts the PPO activity, and in strawberry fruit the optimal pH for the PPO activity was 4.5. Meanwhile, PPO activity kept decreasing with the development of the fruit flesh and achenes. The damaged fruit enhanced the PPO activity. We found four PPO genes encoding the PPO in the strawberry that had different expression levels in tissues. The overexpression of the FaPPO1 genes improved the PPO activity in strawberry fruit and delays the fungus infection process. The FaPPO1 gene expression changes had affected the pathogen-related gene expression, such as PAL, SOD, POD, BG, and Chitinase genes. The fruit damage induced the FaPPO1 gene expression, and the abscisic acid and methyl jasmonic were also involved in the regulation of FaPPO1 gene expression. The FaPPO1 and FaPPO2 gene expressions were regulated both by abiotic stresses of low temperature, NaCl, and H2O2 and biotic stresses of powdery mildew and gray mold. Understanding the regulation mechanism of PPO will be helpful and provide meaningful ideas in future for strawberry breeders.  相似文献   

13.
Real time quantitative PCR (qPCR) is widely used in gene expression analysis for its accuracy and sensitivity. Reference genes serving as endogenous controls are necessary for gene normalization. In order to select an appropriate reference gene to normalize gene expression in Casuarina equisetifolia under salt stress, 10 potential reference genes were evaluated using real time qPCR in the leaves and roots of plants grown under different NaCl concentrations and treatment durations. GeNorm, NormFinder, and BestKeeper analyses reveal that elongation factor 1-alpha (EF1α) and ubiquitin-conjugating enzyme E2 (UBC) were the most appropriate reference genes for real time qPCR under salt stress. However, β-tubulin (βTUB) and actin 7, which were widely used as reference genes in other plant species, were not always stably expressed. The combination of EF1α, UBC, uncharacterized protein 2, DNAJ homolog subfamily A member 2, and glyceraldehyde-3-phosphate dehydrogenase should be ideal reference genes for normalizing gene expression data in all samples under salt stress. It indicates the need for reference gene selection for normalizing gene expression in C. equisetifolia. In addition, the suitability of reference genes selected was confirmed by validating the expression of WRKY29-like and expansin-like B1. The results enable analysis of salt response mechanism and gene expression in C. equisetifolia.  相似文献   

14.
15.
Nitrate is the preferred nitrogen source of higher plants and an essential nutrient for plant growth and development. Nitrate transporters (NRTs) play vital roles in the nitrate uptake and transportation. However, the NRT gene family in pineapple is still unexplored. In this study, we performed a genome-wide analysis of the pineapple genome and identified 48 NRT genes (AcNRTs) distributed unevenly across 9 chromosomes and 2 scaffolds. Phylogenetic analysis showed that these genes can be divided into three groups, namely, AcNRT1/PTR, AcNRT2 and AcNRT3/NAR1 with 44, 3 and 1 members, respectively. AcNRTs within the same phylogenetic group share similar gene structure and domain composition. In addition, syntenic and phylogenetic analyses identified 34 Arabidopsis NRT genes with 31 pineapple NRT genes as orthologs. By investigating the expression profiles of these genes in various tissues, we showed that the expression pattern of some AcNRTs genes is tissue-specific. Furthermore, we examined the expression of the AcNRT2s under nitrate starvation and found that AcNRT2.1 and AcNRT2.2 both have the strongest response in roots suggesting that AcNRTs may play a broad role in the pineapple in response to nitrate deficiency. Taken together, our data provide insights into the evolution and function of pineapple NRTs and pave a path for future functional investigation of pineapple NRTs genes.  相似文献   

16.
RNA interference is a powerful method to inhibit specific gene expression. Recently, silencing target genes by feeding has been successfully carried out in nematodes, insects, and small aquatic organisms. A non-invasive feeding-based RNA interference is reported here for the first time in a mollusk bivalve, the pacific oyster Crassostrea gigas. In this Trojan horse strategy, the unicellular alga Heterocapsa triquetra is the food supply used as a vector to feed oysters with Escherichia coli strain HT115 engineered to express the double-stranded RNA targeting gene. To test the efficacy of the method, the Clock gene, a central gene of the circadian clock, was targeted for knockout. Results demonstrated specific and systemic efficiency of the Trojan horse strategy in reducing Clock mRNA abundance. Consequences of Clock disruption were observed in Clock-related genes (Bmal, Tim1, Per, Cry1, Cry2, Rev.-erb, and Ror) and triploid oysters were more sensitive than diploid to the interference. This non-invasive approach shows an involvement of the circadian clock in oyster bioaccumulation of toxins produced by the harmful alga Alexandrium minutum.  相似文献   

17.
Glutathione reductase (EC 1.6.4.2) is one of the main antioxidant enzymes of the plant cell. In Arabidopsis thaliana, glutathione reductase is encoded by two genes: the gr1 gene encodes the cytosolic-peroxisomal form, and the gr2 gene encodes the chloroplast-mitochondrial form. Little is known about the regulation of expression of plant glutathione reductase genes. In the present work, we have demonstrated that gr2 (but not gr1) gene expression in Arabidopsis leaves changes depending on changes in redox state of the photosynthetic electron transport chain. Expression of both the gr1 and gr2 genes was induced by reactive oxygen species. In heterotrophic suspension cell culture of Arabidopsis, expression of both studied genes did not depend on H2O2 level or on changes in the redox state of the mitochondrial electron transport chain. Our data indicate that chloroplasts are involved in the regulation of the glutathione reductase gene expression in Arabidopsis.  相似文献   

18.
Climate change is posing a major challenge to coffee production worldwide leading to a need for the development of coffee cultivars with increased drought tolerance. In several plant species, the use of DREB genes in crop improvement has achieved promising results to desiccation tolerance engineering. Recent studies reported CcDREB1D specific patterns of expression in Coffea canephora and functional evidence of this gene involvement in drought stress responses. However, knowledge on natural diversity of this gene is largely unknown. In this context, this study aimed at evaluating the sequence variability of the DREB1D gene in several Coffea genotypes. Nucleotide variation in promoters and coding regions of this gene were evaluated in a population consisting of 38 genotypes of C. canephora, C. arabica and C. eugenioides, most of them characterized by different phenotypes (tolerance vs. susceptibility) in relation to drought. The genetic diversity of the loci revealed different haplotypes for the promoter and coding regions. In particular, our findings suggest association between drought tolerance and the genetic variations on DREB1D promoter regions, but not with those from its corresponding coding regions. Gene expression studies revealed up-regulated expression of DREB1D gene upon drought mainly in leaves of drought-tolerant clones of C. canephora, and in response to drought, high, and low temperatures in leaves of C. arabica, suggesting a key role of this gene in coffee responses to abiotic stress.  相似文献   

19.
Lignin is a major component of stone cells in pear fruit, which significantly affects fruit quality. Hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT), a recently discovered enzyme in plants, is an important gene that participates in the formation of lignin. Although HCT gene cloning and expression patterns have been studied in several species, including pear, there is still no extensive genome-wide bioinformatics analysis on the whole gene family, and the evolutionary history of HCT gene family is still unknown. A total of 82 HCT genes were identified in pear, most of which have one or two exons, and all with the conserved HXXXD motif and transferase domains. Based on the structural characteristics and phylogenetic analysis of these sequences, the HCT gene family genes could be classified into four main groups. Structural analysis also revealed that 25 % of HCT genes share a MYB binding site. Expansion of the HCT gene family mostly occurred before the divergence between Arabidopsis and Rosaceae, with whole-genome duplication or segmental duplication events playing the most important role in the expansion of the HCT gene family in pear. At the same time, purifying selection also played a critical role in the evolution of HCT genes. Five of the 82 HCT genes were verified by qRT-PCR to correspond to the pattern of stone cell formation during pear fruit development. The genome-wide identification, chromosome localization, gene structures, synteny, and expression analyses of pear HCT genes provide an overall insight into HCT gene family and their potential involvement in growth and development of stone cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号