首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Experimental and theoretical studies indicate that water molecules between redox partners can significantly affect their electron-transfer and possibly also the triplet–triplet energy transfer (TTET) properties when in the vicinity of chromophores. In the present work, the interaction of an intervening water molecule with the peridinin triplet state in the peridinin–chlorophyll a–protein (PCP) from Amphidinium carterae is studied by using orientation selective 2H electron spin echo envelope modulation (ESEEM) spectroscopy, in conjunction with quantum mechanical calculations. This water molecule is located at the interface between the chlorophyll and peridinin pigments involved in the photoprotection mechanism (Chl601(602)–Per614(624), for nomenclature see reference [1]), based on TTET. The characteristic deuterium modulation pattern is observed in the electron spin-echo envelopes for the PCP complex exchanged against 2H2O. Simulations of the time- and frequency-domain two-pulse and three-pulse ESEEM require two types of coupled 2H. The more strongly coupled 2H has an isotropic coupling constant (aiso) of − 0.4 MHz. This Fermi contact contribution for one of the two water protons and the precise geometry of the water molecule at the interface between the chlorophyll and peridinin pigments, resulting from the analysis, provide experimental evidence for direct involvement of this structured water molecule in the mechanism of TTET. The PCP antenna, characterised by a unity efficiency of the process, represents a model for future investigations on protein- and solvent-mediated TTET in the field of natural/artificial photosynthesis.  相似文献   

2.
The photoexcited triplet state of the carotenoid peridinin in the Peridinin-chlorophyll a-protein of the dinoflagellate Amphidinium carterae has been investigated by pulse EPR and pulse ENDOR spectroscopies at variable temperatures. This is the first time that the ENDOR spectra of a carotenoid triplet in a naturally occurring light-harvesting complex, populated by energy transfer from the chlorophyll a triplet state, have been reported. From the electron spin echo experiments we have obtained the information on the electron spin polarization dynamics and from Mims ENDOR experiments we have derived the triplet state hyperfine couplings of the α- and β-protons of the peridinin conjugated chain. Assignments of β-protons belonging to two different methyl groups, with aiso = 7.0 MHz and aiso = 10.6 MHz respectively, have been made by comparison with the values predicted from density functional theory. Calculations provide a complete picture of the triplet spin density on the peridinin molecule, showing that the triplet spins are delocalized over the whole π-conjugated system with an alternate pattern, which is lost in the central region of the polyene chain. The ENDOR investigation strongly supports the hypothesis of localization of the triplet state on one peridinin in each subcluster of the PCP complex, as proposed in [Di Valentin et al. Biochim. Biophys. Acta 1777 (2008) 186-195]. High spin density has been found specifically at the carbon atom at position 12 (see Fig. 1B), which for the peridinin involved in the photo-protective mechanism is in close contact with the water ligand to the chlorophyll a pigment. We suggest that this ligated water molecule, placed at the interface between the chlorophyll-peridinin pair, is functioning as a bridge in the triplet-triplet energy transfer between the two pigments.  相似文献   

3.
In vitro studies of the carotenoid peridinin, which is the primary pigment from the peridinin chlorophyll-a protein (PCP) light harvesting complex, showed a strong dependence on the lifetime of the peridinin lowest singlet excited state on solvent polarity. This dependence was attributed to the presence of an intramolecular charge transfer (ICT) state in the peridinin excited state manifold. The ICT state was also suggested to be a crucial factor in efficient peridinin to Chl-a energy transfer in the PCP complex. Here we extend our studies of peridinin dynamics to reconstituted PCP complexes, in which Chl-a was replaced by different chlorophyll species (Chl-b, acetyl Chl-a, Chl-d and BChl-a). Reconstitution of PCP with different Chl species maintains the energy transfer pathways within the complex, but the efficiency depends on the chlorophyll species. In the native PCP complex, the peridinin S1/ICT state has a lifetime of 2.7 ps, whereas in reconstituted PCP complexes it is 5.9 ps (Chl-b) 2.9 ps (Chl-a), 2.2 ps (acetyl Chl-a), 1.9 ps (Chl-d), and 0.45 ps (BChl-a). Calculation of energy transfer rates using the Förster equation explains the differences in energy transfer efficiency in terms of changing spectral overlap between the peridinin emission and the absorption spectrum of the acceptor. It is proposed that the lowest excited state of peridinin is a strongly coupled S1/ICT state, which is the energy donor for the major energy transfer channel. The significant ICT character of the S1/ICT state in PCP enhances the transition dipole moment of the S1/ICT state, facilitating energy transfer to chlorophyll via the Förster mechanism. In addition to energy transfer via the S1/ICT, there is also energy transfer via the S2 and hot S1/ICT states to chlorophyll in all reconstituted PCP complexes.  相似文献   

4.
The mechanism of triplet-triplet energy transfer in the peridinin-chlorophyll-protein (PCP) from Amphidinium carterae was investigated by time-resolved EPR (TR-EPR). The approach exploits the concept of spin conservation during triplet-triplet energy transfer, which leads to spin polarization conservation in the observed TR-EPR spectra. The acceptor (peridinin) inherits the polarization of the donor (chlorophyll) in a way which depends on the relative geometrical arrangement of the donor-acceptor couple. Starting from the initially populated chlorophyll triplet state and taking the relative positions among Chls and peridinins from the X-ray structure of PCP, we calculated the expected triplet state polarization of any peridinin in the complex. Comparison with the experimental data allowed us to propose a path for triplet quenching in the protein. The peridinin-chlorophyll pair directly involved in the triplet-triplet energy transfer coincides with the one having the shortest center to center distance. A water molecule, which is coordinated to the central Mg atom of the Chl, is also placed in close contact with the peridinin. The results support the concept of localization of the triplet state mainly in one specific peridinin in each of the two pigment subclusters related by a pseudo C2 symmetry.  相似文献   

5.
The water-soluble peridinin–chlorophyll a-proteins (PCPs) are one of the major light harvesting complexes in photosynthetic dinoflagellates. PCP contains the carotenoid peridinin as its primary pigment. In this study, we identified and characterized the PCP protein and the PCP gene organization in Symbiodinium sp. CS-156. The protein molecular mass is 32.7 kDa, revealing that the PCP is of the monomeric form. The intronless PCP genes are organized in tandem arrays. The PCP gene cassette is composed of 1095-bp coding regions and spacers in between. Despite the heterogeneity of PCP gene tandem repeats, we identified a single form of PCP, the sequence of which exactly matches the deduced sequence of PCP gene clone 7 (JQ395030) by LC–MS/MS analysis of tryptic digested PCP, revealing the mature PCP apoprotein is 312 amino acids in length. Pigment analysis showed a peridinin-to-Chl a ratio of 4. The peridinin-to-Chl a Qy energy transfer efficiency is 95% in this complex.  相似文献   

6.
The peridinin-chlorophyll a-protein (PCP) from dinoflagellates is a soluble light harvesting antenna which gathers incoming photons mainly by the carotenoid peridinin. In PCPs reconstituted with different chlorophylls, the peridinin to chlorophyll energy transfer rates are well predicted by a Förster-like theory, but only if the pigment arrangements are identical in all PCPs. We have determined the X-ray structures of PCPs reconstituted with Chlorophyll-b (Chl-b), Chlorophyll-d (Chl-d) and Bacteriochlorophyll-a (BChl-a) to resolutions ?2 Å. In all three cases the pigment arrangements are essentially the same as in native PCP. Hydrogen bonding is not responsible for preferential incorporation of “non-native” chlorophylls over Chl-a.  相似文献   

7.
《BBA》2023,1864(2):148935
Detailed information on the photo-generated triplet states of diatom and haptophyte Fucoxanthin Chlorophyll-binding Proteins (FCPs and E-FCPs, respectively) have been obtained from a combined spectroscopic investigation involving Transient Absorption and Time-Resolved Electron Paramagnetic Resonance. Pennate diatom Phaeodactylum tricornutum FCP shows identical photoprotective Triplet-Triplet Energy Transfer (TTET) pathways to the previously investigated centric diatom Cyclotella meneghiniana FCP, with the same two chlorophyll a-fucoxanthin pairs that involve the fucoxanthins in sites Fx301 and Fx302 contributing to TTET in both diatom groups. In the case of the haptophyte Emilianina huxleyi E-FCP, only one of the two chlorophyll a-fucoxanthins pairs observed in diatoms, the one involving chlorophyll a409 and Fx301, has been shown to be active in TTET. Furthermore, despite the marked change in the pigment content of E-FCP with growth light intensity, the TTET pathway is not affected. Thus, our comparative investigation of FCPs revealed a photoprotective TTET pathway shared within these classes involving the fucoxanthin in site Fx301, a site exposed to the exterior of the antenna monomer that has no equivalent in Light-Harvesting Complexes from the green lineage.  相似文献   

8.
The triplet state of the carotenoid peridinin, populated by triplet-triplet energy transfer from photoexcited chlorophyll triplet state, in the reconstituted Peridinin-Chlorophyll a-protein, has been investigated by ODMR (Optically detected magnetic resonance), and pulse EPR spectroscopies. The properties of peridinins associated with the triplet state formation in complexes reconstituted with Chl a and Chl d have been compared to those of the main-form peridinin-chlorophyll protein (MFPCP) isolated from Amphidinium carterae. In the reconstituted samples no signals due to the presence of chlorophyll triplet states have been detected, during either steady state illumination or laser-pulse excitation. This demonstrates that reconstituted complexes conserve total quenching of chlorophyll triplet states, despite the biochemical treatment and reconstitution with the non-native Chl d pigment. Zero field splitting parameters of the peridinin triplet states are the same in the two reconstituted samples and slightly smaller than in native MFPCP. Analysis of the initial polarization of the photoinduced Electron-Spin-Echo detected spectra and their time evolution, shows that, in the reconstituted complexes, the triplet state is probably localized on the same peridinin as in native MFPCP although, when Chl d replaces Chl a, a local rearrangement of the pigments is likely to occur. Substitution of Chl d for Chl a identifies previously unassigned bands at ∼ 620 and ∼ 640 nm in the Triplet-minus-Singlet (T − S) spectrum of PCP detected at cryogenic temperature, as belonging to peridinin.  相似文献   

9.
Peridinin-chlorophyll a protein (PCP) is a unique water soluble antenna complex that employs the carotenoid peridinin as the main light-harvesting pigment. In the present study the near edge X-ray absorption fine structure (NEXAFS) spectrum of PCP was recorded at the carbon K-edge. Additionally, the NEXAFS spectra of the constituent pigments, chlorophyll a and peridinin, were measured. The energies of the lowest unoccupied molecular levels of these pigments appearing in the carbon NEXAFS spectrum were resolved. Individual contributions of the pigments and the protein to the measured NEXAFS spectrum of PCP were determined using a “building block” approach combining NEXAFS spectra of the pigments and the amino acids constituting the PCP apoprotein. The results suggest that absorption changes of the pigments in the carbon near K-edge region can be resolved following excitation using a suitable visible pump laser pulse. Consequently, it may be possible to study excitation energy transfer processes involving “optically dark” states of carotenoids in pigment-protein complexes by soft X-ray probe optical pump double resonance spectroscopy (XODR).  相似文献   

10.
The photoexcited triplet state of the carotenoid peridinin in the high-salt peridinin-chlorophyll a-protein (HSPCP) of the dinoflagellate Amphidinium carterae was investigated by ODMR (optically detected magnetic resonance), pulse EPR and pulse ENDOR spectroscopies. The properties of peridinins associated to the triplet state formation in HSPCP were compared to those of peridinins involved in triplet state population in the main-form peridinin-chlorophyll protein (MFPCP), previously reported. In HSPCP no signals due to the presence of chlorophyll triplet state have been detected, during either steady-state illumination or laser-pulse excitation, meaning that peridinins play the photo-protective role with 100% efficiency as in MFPCP. The general spectroscopic features of the peridinin triplet state are very similar in the two complexes and allow drawing the conclusion that the triplet formation pathway and the triplet localization in one specific peridinin in each subcluster are the same in HSPCP and MFPCP. However some significant differences also emerged from the analysis of the spectra. Zero field splitting parameters of the peridinin triplet states are slightly smaller in HSPCP and small changes are also observed for the hyperfine splittings measured by pulse ENDOR and assigned to the β-protons belonging to one of the two methyl groups present in the conjugated chain, (aiso = 10.3 MHz in HSPCP vs aiso = 10.6 MHz in MFPCP). The differences are explained in terms of local distortion of the tails of the conjugated chains of the peridinin molecules, in agreement with the conformational data resulting from the X-ray structures of the two complexes.  相似文献   

11.
12.
Peridinin–chlorophyll a protein (PCP) is a unique water soluble antenna complex that employs the carotenoid peridinin as the main light-harvesting pigment. In the present study the near edge X-ray absorption fine structure (NEXAFS) spectrum of PCP was recorded at the carbon K-edge. Additionally, the NEXAFS spectra of the constituent pigments, chlorophyll a and peridinin, were measured. The energies of the lowest unoccupied molecular levels of these pigments appearing in the carbon NEXAFS spectrum were resolved. Individual contributions of the pigments and the protein to the measured NEXAFS spectrum of PCP were determined using a “building block” approach combining NEXAFS spectra of the pigments and the amino acids constituting the PCP apoprotein. The results suggest that absorption changes of the pigments in the carbon near K-edge region can be resolved following excitation using a suitable visible pump laser pulse. Consequently, it may be possible to study excitation energy transfer processes involving “optically dark” states of carotenoids in pigment–protein complexes by soft X-ray probe optical pump double resonance spectroscopy (XODR).  相似文献   

13.
We use femtosecond transient absorption spectroscopy to study chlorophyll (Chl)-Chl energy transfer in the peridinin-chlorophyll protein (PCP) reconstituted with mixtures of either chlorophyll b (Chlb) and Chld or Chla and bacteriochlorophyll a (BChla). Analysis of absorption and transient absorption spectra demonstrated that reconstitution with chlorophyll mixtures produces a significant fraction of PCP complexes that contains a different Chl in each domain of the PCP monomer. The data also suggest that binding affinity of Chla is less than that of the other three Chl species. By exciting the Chl species lying at higher energy, we obtained energy transfer times of 40 ± 5 ps (Chlb-Chld) and 59 ± 3 ps (Chla-BChla). The experimental values match those obtained from the Förster equation, 36 and 50 ps, respectively, showing that energy transfer proceeds via the Förster mechanism. Excitation of peridinin in the PCP complex reconstituted with Chla/BChla mixture provided time constants of 2.6 and 0.4 ps for the peridinin-Chla and peridinin-BChla energy transfer, matching those obtained from studies of PCP complexes reconstituted with single chlorophyll species.  相似文献   

14.
We combine ensemble and single-molecule spectroscopy to gain insight into the energy transfer between chlorophylls (Chls) in peridinin-chlorophyll-protein (PCP) complexes reconstituted with Chl a, Chl b, as well as both Chl a and Chl b. The main focus is the heterochlorophyllous system (Chl a/b-N-PCP), and reference information essential to interpret experimental observations is obtained from homochlorophyllous complexes. Energy transfer between Chls in Chl a/b-N-PCP takes place from Chl b to Chl a and also from Chl a to Chl b with comparable Förster energy transfer rates of 0.0324 and 0.0215 ps−1, respectively. Monte Carlo simulations yield the ratio of 39:61 for the excitation distribution between Chl a and Chl b, which is larger than the equilibrium distribution of 34:66. An average Chl a/Chl b fluorescence intensity ratio of 66:34 is measured, however, for single Chl a/b-N-PCP complexes excited into the peridinin (Per) absorption. This difference is attributed to almost three times more efficient energy transfer from Per to Chl a than to Chl b. The results indicate also that due to bilateral energy transfer, the Chl system equilibrates only partially during the excited state lifetimes.  相似文献   

15.
Single molecule spectroscopy experiments are reported for native peridinin-chlorophyll a-protein (PCP) complexes, and three reconstituted light-harvesting systems, where an N-terminal construct of native PCP from Amphidinium carterae has been reconstituted with chlorophyll (Chl) mixtures: with Chl a, with Chl b and with both Chl a and Chl b. Using laser excitation into peridinin (Per) absorption band we take advantage of sub-picosecond energy transfer from Per to Chl that is order of magnitude faster than the Förster energy transfer between the Chl molecules to independently populate each Chl in the complex. The results indicate that reconstituted PCP complexes contain only two Chl molecules, so that they are spectroscopically equivalent to monomers of native-trimeric-PCP and do not aggregate further. Through removal of ensemble averaging we are able to observe for single reconstituted PCP complexes two clear steps in fluorescence intensity timetraces attributed to subsequent bleaching of the two Chl molecules. Importantly, the bleaching of the first Chl affects neither the energy nor the intensity of the emission of the second one. Since in strongly interacting systems Chl is a very efficient quencher of the fluorescence, this behavior implies that the two fluorescing Chls within a PCP monomer interact very weakly with each other which makes it possible to independently monitor the fluorescence of each individual chromophore in the complex. We apply this property, which distinguishes PCP from other light-harvesting systems, to measure the distribution of the energy splitting between two chemically identical Chl a molecules contained in the PCP monomer that reaches 280 cm− 1. In agreement with this interpretation, stepwise bleaching of fluorescence is also observed for native PCP complexes, which contain six Chls. Most PCP complexes reconstituted with both Chl a and Chl b show two emission lines, whose wavelengths correspond to the fluorescence of Chl a and Chl b. This is a clear proof that these two different chromophores are present in a single PCP monomer. Single molecule fluorescence studies of PCP complexes, both native and artificially reconstituted with chlorophyll mixtures, provide new and detailed information necessary to fully understand the energy transfer in this unique light-harvesting system.  相似文献   

16.
Bacteriochlorophyll a biosynthesis requires the stereo- and regiospecific two electron reduction of the C7-C8 double bond of chlorophyllide a by the nitrogenase-like multisubunit metalloenzyme, chlorophyllide a oxidoreductase (COR). ATP-dependent COR catalysis requires interaction of the protein subcomplex (BchX)2 with the catalytic (BchY/BchZ)2 protein to facilitate substrate reduction via two redox active iron-sulfur centers. The ternary COR enzyme holocomplex comprising subunits BchX, BchY, and BchZ from the purple bacterium Roseobacter denitrificans was trapped in the presence of the ATP transition state analog ADP·AlF4. Electron paramagnetic resonance experiments revealed a [4Fe-4S] cluster of subcomplex (BchX)2. A second [4Fe-4S] cluster was identified on (BchY/BchZ)2. Mutagenesis experiments indicated that the latter is ligated by four cysteines, which is in contrast to the three cysteine/one aspartate ligation pattern of the closely related dark-operative protochlorophyllide a oxidoreductase (DPOR). In subsequent mutagenesis experiments a DPOR-like aspartate ligation pattern was implemented for the catalytic [4Fe-4S] cluster of COR. Artificial cluster formation for this inactive COR variant was demonstrated spectroscopically. A series of chemically modified substrate molecules with altered substituents on the individual pyrrole rings and the isocyclic ring were tested as COR substrates. The COR enzyme was still able to reduce the B ring of substrates carrying modified substituents on ring systems A, C, and E. However, substrates with a modification of the distantly located propionate side chain were not accepted. A tentative substrate binding mode was concluded in analogy to the related DPOR system.  相似文献   

17.
The major light-harvesting complex of Amphidinium (A.) carterae, chlorophyll-a–chlorophyll-c 2–peridinin–protein complex (acpPC), was studied using ultrafast pump-probe spectroscopy at low temperature (60 K). An efficient peridinin–chlorophyll-a energy transfer was observed. The stimulated emission signal monitored in the near-infrared spectral region was stronger when redder part of peridinin pool was excited, indicating that these peridinins have the S1/ICT (intramolecular charge-transfer) state with significant charge-transfer character. This may lead to enhanced energy transfer efficiency from “red” peridinins to chlorophyll-a. Contrary to the water-soluble antenna of A. carterae, peridinin–chlorophyll-a protein, the energy transfer rates in acpPC were slower under low-temperature conditions. This fact underscores the influence of the protein environment on the excited-state dynamics of pigments and/or the specificity of organization of the two pigment–protein complexes.  相似文献   

18.
The water-soluble peridinin-chlorophyll a-proteins (PCPs) are one of the major light harvesting complexes in photosynthetic dinoflagellates. PCP contains the carotenoid peridinin as its primary pigment. In this study, we identified and characterized the PCP protein and the PCP gene organization in Symbiodinium sp. CS-156. The protein molecular mass is 32.7kDa, revealing that the PCP is of the monomeric form. The intronless PCP genes are organized in tandem arrays. The PCP gene cassette is composed of 1095-bp coding regions and spacers in between. Despite the heterogeneity of PCP gene tandem repeats, we identified a single form of PCP, the sequence of which exactly matches the deduced sequence of PCP gene clone 7 (JQ395030) by LC-MS/MS analysis of tryptic digested PCP, revealing the mature PCP apoprotein is 312 amino acids in length. Pigment analysis showed a peridinin-to-Chl a ratio of 4. The peridinin-to-Chl a Q(y) energy transfer efficiency is 95% in this complex.  相似文献   

19.
The Photosystem I reaction centre protein CP1, isolated from barley using polyacrylamide gel electrophoresis showed an EPR (Electron Paramgnetic Resonance) spectrum with the polarisation pattern AEEAAE, typical of the primary donor triplet state 3P700, created via radical pair formation and recombination. 3P700 could also be detected by Fluorescence Detected Magnetic Resonance (FDMR) at f > 700 nm even in the presence of a large number of chlorophyll antennae. Its zero field splitting parameters, D=282.5×10-4 cm-1 and E=38.5×10-4 cm-1, were independent of the detection wavelength, and agreed with ADMR (Absorption Detected Magnetic Resonance) and EPR values. The signs of the 3P700 D+E and D-E transitions were positive (increase in fluorescence intensity on applying a resonance microwave field). In contrast, in the emission band 685 < f < 700 nm FDMR spectra with negative D+E and D-E transitions were detected, and the D value was wavelength-dependent. These FDMR results support an excitation energy transfer model for CP1, derived from time-resolved fluorescence studies, in which two chlorophyll antenna forms are distinguished, with fluorescence at 685 < f < 700 nm (inner core antennae, F690), and f > 700 nm (low energy antenna sites, F720), in addition to the P700. The FDMR spectrum in F690 emission can be interpreted as that of 3P700, observed via reverse singlet excitation energy transfer and added to the FDMR spectrum of the antenna triplet states generated via intramolecular intersystem crossing. This would indicate that reversible energy transfer between F690 and P700 occurs even at 4.2 K.Abbreviations Chl chlorophyll - CP1 core chlorophyll protein of Photosystem I - EPR electron paramagnetic resonance - F690, F720 chlorophyll forms having fluorescence maximum at 690–695 and 720 nm, respectively - F(A)(O)DMR fluorescence (absorption) (optical) detected magnetic resonance - FF fluorescence fading - ISC intramolecular intersystem crossing - f fluorescence emission wave-length - LHC I light harvesting chlorophyll a/b protein of Photosystem I - P700 primary donor of Photosystem I - PS I Photosystem I - RC reaction centre - RP radical pair - SDS sodium dodecyl sulphate - ZFS zero field splitting  相似文献   

20.
Summary A peridinin-chlorophyll a-protein complex (PCP) was obtained in large quantity from the marine dinoflagellates, Glenodinium sp. and Gonyaulax polyedra. The chromoproteins have similar molecular weights, 35,500 for Glenodinium sp. and 34,500 for G. polyedra. The proteins from the PCP complex of Glenodinium sp. dissociated from the chromophore on treatment with 1% sodium dodecyl sulfate (SDS) at room temperature. The protein component was a single subunit with a molecular weight of 15,500. Proteins from the PCP complex of G. polyedra were composed of a single polypeptide with a molecular weight of about 32,000. Two peridinin-chlorophyll a-proteins from Glenodinium sp. accounted for 70% of the PCP complex and had isoelectric points of 7.4 and 7.3. The PCP complex from G. polyedra was dominated by a single chromoprotein with an isoelectric point of 7.2 Chromophore analysis indicated the presence of only peridinin and chlorophyll a in a molar ratio approaching 4:1. Other pigments characteristically found in dinoflagellates were absent. Fluorescence excitation spectra of purified PCP indicated an efficient energy transfer from peridinin to chlorophyll a, an observation that lends support to the reported role of peridinin as an accessory pigment in photosynthetic oxygen evolution. In several other brown colored dinoflagellates examined, PCP representtd less than 20% of the total peridinin. However, no PCP could be isolated from cultures of Amphidinium carterae (PY-1). This study provides further evidence that PCP is a normal component of most peridinin-containing dinoflagellates, and functions as a light-harvesting component of the dinoflagellate chloroplast. No fucoxanthin-containing analog of PCP was detected in the chrysophyte, Cricosphera carterae and the dinoflagellate Glenodinium foliaceum.Abbreviations PCP peridinin-chlorophyll a-protein complex - PCP's peridinin-chlorophyll a-proteins - SDS sodium dodecyl sulfate - pl isoelectric point - DEAE diethylaminoethyl cellulose - TLC thin layer chromatography - A optical absorbance at a designated wavelength - SIO (F.T. Haxo), Scripps Institution of Oceanography collection  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号