首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
摘要:近年来,免疫治疗在晚期肾透明细胞癌的治疗中异军突起,使人们对于肾癌治疗有了全新的认识。肿瘤免疫治疗药物是通过抑制免疫检查点从而抑制肿瘤细胞免疫逃逸,使免疫细胞可以杀伤肿瘤细胞来发挥治疗作用。因此,了解肾透明细胞癌中免疫检查点相关免疫逃逸机制对于制定有效的治疗策略以及开发新的免疫治疗药物至关重要。本文对目前肾透明细胞癌中主要的免疫检查点(PD-1/PD-L1、CTLA-4、B7-H4、LAG-3、TIM-3和HLA-G)相关的免疫逃逸机制进行综述。  相似文献   

2.
Expression of programmed death 1 ligands by murine T cells and APC   总被引:31,自引:0,他引:31  
Programmed death 1 (PD-1) is a new member of the CD28/CTLA-4 family, which has been implicated in the maintenance of peripheral tolerance. Two ligands for PD-1, namely, B7-H1 (PD-L1) and B7-DC (PD-L2), have recently been identified as new members of the B7 family but their expression at the protein level remains largely unknown. To characterize the expression of B7-H1 and B7-DC, we newly generated an anti-mouse B7-H1 mAb (MIH6) and an anti-mouse B7-DC mAb (TY25). MIH6 and TY25 immunoprecipitated a single molecule of 43 and 42 kDa from the lysate of B7-H1 and B7-DC transfectants, respectively. Flow cytometric analysis revealed that B7-H1 was broadly expressed on the surface of mouse tumor cell lines while the expression of B7-DC was rather restricted. PD-1 was expressed on anti-CD3-stimulated T cells and anti-IgM plus anti-CD40-stimulated B cells at high levels but was undetectable on activated macrophages or DCs. B7-H1 was constitutively expressed on freshly isolated splenic T cells, B cells, macrophages, and dendritic cells (DCs), and up-regulated on T cells by anti-CD3 stimulation on macrophages by LPS, IFN-gamma, GM-CSF, or IL-4, and on DCs by IFN-gamma, GM-CSF, or IL-4. In contrast, B7-DC expression was only inducible on macrophages and DCs upon stimulation with IFN-gamma, GM-CSF, or IL-4. The inducible expression of PD-1 ligands on both T cells and APCs may suggest new paradigms of PD-1-mediated immune regulation.  相似文献   

3.
Cancers can be recognized by the immune system, and the immune system may regulate and even eliminate tumors. The development of checkpoint blocking antibodies, such as those directed against cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed death 1 receptor (PD-1), have demonstrated significant recent promise in the treatment of an expanding list of malignancies. While both CTLA-4 and PD-1 function as negative regulators, each plays a non-redundant role in modulating immune responses. CTLA-4 attenuates the early activation of naïve and memory T cells. In contrast, PD-1 is primarily involved in modulating T cell activity in peripheral tissues via interaction with its ligands, PD-L1 and PD-L2. Unfortunately, not all patients respond to these therapies, and evaluation of biomarkers associated with clinical outcomes is ongoing. This review will examine the efficacy, toxicities, and clinical development of checkpoint blocking antibodies, including agents already approved by the US Food and Drug Administration (anti-CTLA-4, ipilimumab) or in development (anti-PD-1, PD-L1). Future studies will likely uncover new promising immunologic checkpoints to target alone or in combination with other immunotherapeutic approaches, chemotherapy, radiotherapy, and small molecules.  相似文献   

4.
Adoptive cell transfer (ACT), either using rapidly expanded tumor infiltrating lymphocytes or T-cell receptor transduced peripheral blood lymphocytes, can be considered one of the most promising approaches in cancer immunotherapy. ACT results in the repopulation of the host with high frequencies of tumor-specific T cells; however, optimal function of these cells within the tumor micro-environment is required to reach long-term tumor clearance. We and others have shown that ongoing anti-tumor immune responses can be impaired by the expression of ligands, such as PD-L1 (B7-H1) on tumor cells. Such inhibitory molecules can affect T cells at the effector phase via their receptor PD-1. PD-L1/PD-1 interaction has indeed been shown crucial in inducing T-cell anergy and maintaining peripheral tolerance. In order to maximize anti-tumor responses, antibodies that target the PD-1/PD-L1 axis are currently in phase I/II trials. Alternatively, a more refined approach could be the selective targeting of PD-1 in tumor-specific T cells to obtain long-term resistance against PD-1-mediated inhibition. We addressed whether this goal could be achieved by means of retroviral siRNA delivery. Effective siRNA sequences resulting in the reduction of surface PD-1 expression led to improved murine as well as human T-cell immune functions in response to PD-L1 expressing melanoma cells. These data suggest that blockade of PD-1-mediated T-cell inhibition through siRNA forms a promising approach to achieve long-lasting enhancement of tumor-specific T-cell function in adoptive T-cell therapy protocols.  相似文献   

5.
Programmed death receptor ligand 1 (PD-L1, also called B7-H1) is a recently described B7 family member. In contrast to B7-1 and B7-2, PD-L1 does not interact with either CD28 or CTLA-4. To date, one specific receptor has been identified that can be ligated by PD-L1. This receptor, programmed death receptor 1 (PD-1), has been shown to negatively regulate T-cell receptor (TCR) signaling. Upon ligating its receptor, PD-L1 has been reported to decrease TCR-mediated proliferation and cytokine production. PD-1 gene–deficient mice developed autoimmune diseases, which early led to the hypothesis of PD-L1 regulating peripheral tolerance. In contrast to normal tissues, which show minimal surface expression of PD-L1 protein, PD-L1 expression was found to be abundant on many murine and human cancers and could be further up-regulated upon IFN- stimulation. Thus, PD-L1 might play an important role in tumor immune evasion. This review discusses the currently available data concerning negative T-cell regulation via PD-1, the blockade of PD-L1/PD-1 interactions, and the implications for adoptive T-cell therapies.  相似文献   

6.
Hepatocellular carcinoma (HCC) is one of the most lethal tumors in China and worldwide, although first-line therapies for HCC, such as atezolizumab and bevacizumab, have been effective with good results, the researches on new therapies have attracted much attention. With the deepening research on tumor immunology, the role and operation mechanism of immune cells in the tumor microenvironment (TME) of HCC have been explained, such as programmed cell death protein 1 (PD-1) binding to ligand could cause T cell exhaustion and reduce IFN-γ T cell secretion, cytotoxic T lymphocyte 4 (CTLA-4) and CD28 mediate immunosuppression by competing for B7 protein and disrupting CD28 signal transduction pathway, which also lays the foundation for the development and application of more new immune checkpoint inhibitors (ICIs). The biological behavior of various immune checkpoints has been proved in HCC, such as PD-1, programmed cell death ligand 1 (PD-L1), CTLA-4 and so on, leading to a series of clinical trials. Currently, FDA approved nivolumab, pembrolizumab and nivolumab plus ipilimumab for the treatment of HCC. However, the treatment of ICI has the disadvantages of low response rate and many side effects, so the combination of ICIs and various other therapies (such as VEGF or VEGFR inhibition, neoadjuvant and adjuvant therapy, locoregional therapies) has been derived. Further studies on immune checkpoint mechanisms may reveal new therapeutic targets and new combination therapies in the future.  相似文献   

7.
Differential binding properties of B7-H1 and B7-DC to programmed death-1   总被引:16,自引:0,他引:16  
Programmed death-1 (PD-1) is a negative regulatory receptor expressed on activated T and B cells. Two ligands for PD-1, B7-H1 (PD-L1) and B7-DC (PD-L2), have been identified, but their binding properties have not been characterized yet. In this study, we generated soluble Ig fusion proteins of these molecules and examined the kinetics and relative affinities of the interactions between B7-H1 or B7-DC and PD-1 by flow cytometry and surface plasmon resonance. The interaction of B7-DC/PD-1 exhibited a 2-6-fold higher affinity and had different association/dissociation kinetics compared with the interaction of B7-H1/PD-1. Our results suggest that the differential binding properties of B7-H1 and B7-DC may be responsible for differential contributions of these two PD-1 ligands to immune responses.  相似文献   

8.
Among the main promising systems to triggering therapeutic antitumor immunity is the blockade of immune checkpoints. Immune checkpoint pathways regulate the control and eradication of infections, malignancies, and resistance against a host of autoantigens. Initiation point of the immune response is T cells, which have a critical role in this pathway. As several immune checkpoints are initiated by ligand–receptor interactions, they can be freely blocked by antibodies or modulated by recombinant forms of ligands or receptors. Antibodies against cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) were the first immunotherapeutics that achieved the US Food and Drug Administration approval. Preliminary clinical results with the blockers of additional immune checkpoint proteins, such as programmed cell death protein 1 (PD-1) indicate extensive and different chances to boost antitumor immunity with the objective of conferring permanent clinical effects. This study provides an overview of the immune checkpoint pathways, including CTLA-4, PD-1, lymphocyte activation gene 3, T-cell immunoglobulin and mucin domain 3, B7-H3, and diacylglycerol kinase α and implications of their inhibition in the cancer therapy.  相似文献   

9.
A newly identified costimulatory molecule, programmed death-1 (PD-1), provides a negative signal that is essential for immune homeostasis. However, it has been suggested that its ligands, B7-H1 (PD-L1) and B7-dendritic cells (B7-DC; PD-L2), could also costimulate T cell proliferation and cytokine secretion. Here we demonstrate the involvement of PD-1/B7-H1 and B7-DC interaction in the development of colitis. We first examined the expression profiles of PD-1 and its ligands in both human inflammatory bowel disease and a murine chronic colitis model induced by adoptive transfer of CD4(+)CD45RB(high) T cells to SCID mice. Second, we assessed the therapeutic potential of neutralizing anti-B7-H1 and/or B7-DC mAbs using this colitis model. We found significantly increased expression of PD-1 on T cells and of B7-H1 on T, B, and macrophage/DCs in inflamed colon from both inflammatory bowel disease patients and colitic mice. Unexpectedly, the administration of anti-B7-H1, but not anti-B7-DC, mAb after transfer of CD4(+)CD45RB(high) T cells suppressed wasting disease with colitis, abrogated leukocyte infiltration, and reduced the production of IFN-gamma, IL-2, and TNF-alpha, but not IL-4 or IL-10, by lamina propria CD4(+) T cells. These data suggest that the interaction of PD-1/B7-H1, but not PD-1/B7-DC, might be involved in intestinal mucosal inflammation and also show a possible role of interaction between B7-H1 and an as yet unidentified receptor for B7-H1 in inducing T cell activation.  相似文献   

10.
Programmed death receptor 1 (PD-1) is an important signaling molecule often involved in tumor-mediated suppression of activated immune cells. Binding of this receptor to its ligands, B7-H1 (PD-L1) and B7-DC (PD-L2), attenuates T cell activation, reduces IL-2 and IFN-γ secretion, decreases proliferation and cytotoxicity, and induces apoptosis. B7-DC-Ig is a recombinant protein that binds and targets PD-1. It is composed of an extracellular domain of murine B7-DC fused to the Fc portion of murine IgG2a. In this study, we demonstrate that B7-DC-Ig can enhance the therapeutic efficacy of vaccine when combined with cyclophosphamide. We show that this combination significantly enhances Ag-specific immune responses and leads to complete eradication of established tumors in 60% of mice and that this effect is CD8 dependent. We identified a novel mechanism by which B7-DC-Ig exerts its therapeutic effect that is distinctly different from direct blocking of the PD-L1-PD-1 interaction. In this study, we demonstrate that there are significant differences between levels and timing of surface PD-1 expression on different T cell subsets. We found that these differences play critical roles in anti-tumor immune effect exhibited by B7-DC-Ig through inhibiting proliferation of PD-1(high) CD4 T cells, leading to a significant decrease in the level of these cells, which are enriched for regulatory T cells, within the tumor. In addition, it also leads to a decrease in PD-1(high) CD8 T cells, tipping the balance toward nonexhausted functional PD-1(low) CD8 T cells. We believe that the PD-1 expression level on T cells is a crucial factor that needs to be considered when designing PD-1-targeting immune therapies.  相似文献   

11.
The negative signal provided by interactions of programmed death-1 (PD-1) and its ligands, costimulatory molecules PD-L1 (also B7-H1) and PD-L2 (also B7-DC), is involved in the mechanisms of tumor immune evasion. In this study, we found that this negative signal was also involved in immune evasion in tumor immunotherapy. When we used different doses of a constructed eukaryotic expression plasmid, pSLC, which expresses functional murine secondary lymphoid tissue chemokine (SLC, CCL21), to treat BALB/c mice inoculated with H22 murine hepatoma cells, the inhibitory effect was enhanced along with the increase of pSLC dosage. Unexpectedly, however, the best complete inhibition rate of tumor was reached when pSLC was used at the dosage of 50 microg but not 100 or 200 microg. RT-PCR and real-time PCR revealed that both PD-L1 and PD-L2 genes were expressed in tumor and vicinal muscle tissues of tumor-bearing mice and the expression level was significantly increased if a higher dosage of pSLC was administered. We then constructed a eukaryotic expression plasmid (pPD-1A) that expresses the extracellular domain of murine PD-1 (sPD-1). sPD-1 could bind PD-1 ligands, block PD-Ls-PD-1 interactions, and enhance the cytotoxicity of tumor-specific CTL. Local gene transfer by injection of pPD-1A mediated antitumor effect and improved SLC-mediated antitumor immunity. The combined gene therapy with SLC plus sPD-1 did not induce remarkable autoimmune manifestations. Our findings provide a potent method of improving the antitumor effects of SLC and possibly other immunotherapeutic methods by local blockade of negative costimulatory molecules.  相似文献   

12.
Recent clinical data support ideas of Programmed death receptor-ligand 1 (PD-L1; also called B7-H1, CD274) playing an important role in immune evasion of tumor cells. Expression of PD-L1 on tumors strongly correlates with the survival of cancer patients. PD-L1 on tumors interacts with the co-inhibitory molecule Programmed death receptor-1 (PD-1, CD279) on T cells mediating decreased TCR-mediated proliferation and cytokine production. In animal tumor models, blockade of PD-L1/PD-1 interactions resulted in an improved tumor control. In addition, exhausted T cells during chronic viral infections could be revived by PD-L1 blockade. Thus, targeting PD-L1/PD-1 interactions might improve the efficacy of adoptive cell therapies (ACT) of chronic infections as well as cancers. Obstacles for a general blockade of PD-L1 might be its role in mediating peripheral tolerance. This review discusses the currently available data concerning the role of PD-L1 in tumor immune evasion and envisions possibilities for implementation into ACT for cancer patients. This article is a symposium paper from the conference “Cancer Immunotherapy 2006 Meets Strategies for Immune Therapy,” held in Mainz, Germany, on 4–5 May 2006.  相似文献   

13.
The major hurdle for cancer vaccines to be effective is posed by tumor immune evasion. Several common immune mechanisms and mediators are exploited by tumors to avoid immune destruction. In an attempt to shed more light on the immunosuppressive environment in uterine tumors, we analyzed the presence of PD-L1, PD-L2, B7-H4, indoleamine 2,3-dioxygenase (IDO), galectin-1, galectin-3, arginase-1 activity and myeloid-derived suppressor cell (MDSC) infiltration. IDO, PD-L1, PD-L2 and B7-H4 were analyzed by immunohistochemistry. PD-L2 was mostly expressed at low levels in these tumors. We found high IDO expression in 21 % of endometrial carcinoma samples and in 14 % of uterine sarcoma samples. For PD-L1 and B7-H4, we found high expression in 92 and 90 % of endometrial cancers, respectively, and in 100 and 92 % of the sarcomas. Galectin-1 and 3 were analyzed in tissue lysates by ELISA, but we did not find an increase in both molecules in tumor lysates compared with benign tissues. We detected expression of galectin-3 by fibroblasts, immune cells and tumor cells in single-cell tumor suspensions. In addition, we noted a highly significant increase in arginase-1 activity in endometrial carcinomas compared with normal endometria, which was not the case for uterine sarcomas. Finally, we could demonstrate MDSC infiltration in fresh tumor suspensions from uterine tumors. These results indicate that the PD-1/PD-L1 interaction and B7-H4 could be possible targets for immune intervention in uterine cancer patients as well as mediation of MDSC function. These observations are another step toward the implementation of inhibitors of immunosuppression in the treatment of uterine cancer patients.  相似文献   

14.
Within the ovarian cancer microenvironment, there are several mechanisms that suppress the actions of antitumor immune effectors. Delineating the complex immune microenvironment is an important goal toward developing effective immune-based therapies. A dominant pathway of immune suppression in ovarian cancer involves tumor-associated and dendritic cell (DC)-associated B7-H1. The interaction of B7-H1 with PD-1 on tumor-infiltrating T cells is a widely cited theory of immune suppression involving B7-H1 in ovarian cancer. Recent studies suggest that the B7-H1 ligand, programmed death receptor-1 (PD-1), is also expressed on myeloid cells, complicating interpretations of how B7-H1 regulates DC function in the tumor. In this study, we found that ovarian cancer-infiltrating DCs progressively expressed increased levels of PD-1 over time in addition to B7-H1. These dual-positive PD-1(+) B7-H1(+) DCs have a classical DC phenotype (i.e., CD11c(+)CD11b(+)CD8(-)), but are immature, suppressive, and respond poorly to danger signals. Accumulation of PD-1(+)B7-H1(+) DCs in the tumor was associated with suppression of T cell activity and decreased infiltrating T cells in advancing tumors. T cell suppressor function of these DCs appeared to be mediated by T cell-associated PD-1. In contrast, ligation of PD-1 expressed on the tumor-associated DCs suppressed NF-κB activation, release of immune regulatory cytokines, and upregulation of costimulatory molecules. PD-1 blockade in mice bearing ovarian cancer substantially reduced tumor burden and increased effector Ag-specific T cell responses. Our results reveal a novel role of tumor infiltrating PD-1(+)B7-H1(+) DCs in mediating immune suppression in ovarian cancer.  相似文献   

15.
PD-1 is an immunoinhibitory receptor that belongs to the CD28/CTLA-4 family. B7-H1 (PD-L1) and B7-DC (PD-L2), which belong to the B7 family, have been identified as ligands for PD-1. Paradoxically, it has been reported that both B7-H1 and B7-DC co-stimulate or inhibit T cell proliferation and cytokine production. To determine the role of B7-H1 and B7-DC in T cell-APC interactions, we examined the contribution of B7-H1 and B7-DC to CD4+ T cell activation by B cells, dendritic cells, and macrophages using anti-B7-H1, anti-B7-DC, and anti-PD-1 blocking mAbs. Anti-B7-H1 mAb and its Fab markedly inhibited the proliferation of anti-CD3-stimulated naive CD4+ T cells, but enhanced IL-2 and IFN-gamma production in the presence of macrophages. The inhibition of T cell proliferation by anti-B7-H1 mAb was abolished by neutralizing anti-IFN-gamma mAb. Coculture of CD4+ T cells and macrophages from IFN-gamma-deficient or wild-type mice showed that CD4+ T cell-derived IFN-gamma was mainly responsible for the inhibition of CD4+ T cell proliferation. Anti-B7-H1 mAb induced IFN-gamma-mediated production of NO by macrophages, and inducible NO synthase inhibitors abrogated the inhibition of CD4+ T cell proliferation by anti-B7-H1 mAb. These results indicated that the inhibition of T cell proliferation by anti-B7-H1 mAb was due to enhanced IFN-gamma production, which augmented NO production by macrophages, suggesting a critical role for B7-H1 on macrophages in regulating IFN-gamma production by naive CD4+ T cells and, hence, NO production by macrophages.  相似文献   

16.
17.
虽然近年来肿瘤的治疗取得较大进展,乳腺癌依旧是威胁女性健康的主要杀手。近年来,乳腺癌相关的免疫治疗取得较大进展,肿瘤浸润淋巴细胞(TILs)、程序性死亡受体 1(PD 1)及其配体PD L1、肿瘤突变负荷等肿瘤标志物对乳腺癌免疫治疗具有预测作用,并与乳腺癌的预后相关。免疫检查点抑制剂,例如PD-1/PD-L1及细胞毒性T淋巴细胞抗原4(CTLA 4)抑制剂在乳腺癌中取得极大进展,各期临床试验结果显示不同的效用。肿瘤疫苗的使用为乳腺癌免疫治疗的另一途径,虽然部分疫苗在临床试验中取得较好成效,但绝大多数仍需深入研究,乳腺癌免疫治疗之途仅为开端,依旧需要大量研究。本文简要介绍了乳腺癌免疫治疗相关的生物标志物、免疫检查点抑制剂以及肿瘤疫苗的研究进展。  相似文献   

18.
Journal of Molecular Histology - PD-1, PD-L1, CTLA-4, TIM-3, and LAG-3, crucial immune checkpoint molecules in the tumor microenvironment, identify as key targets for cancer immunotherapy. There is...  相似文献   

19.
B7-DC regulates asthmatic response by an IFN-gamma-dependent mechanism   总被引:5,自引:0,他引:5  
B7-H1 (PD-L1) and B7-DC (PD-L2) are the ligands for programmed death-1 (PD-1), which is a member of the CD28/CTLA-4 family and has been implicated in peripheral tolerance. We investigated the roles of B7-H1 and B7-DC in a murine OVA-induced allergic asthma model. B7-H1 was constitutively expressed on dendritic cells, macrophages, B cells, and T cells in the lungs of naive mice, and its expression could be dramatically increased after allergen challenge. In contrast, B7-DC expression was scarcely expressed on dendritic cells in naive mice, but was up-regulated after allergen challenge, although the up-regulation of B7-DC expression on macrophages was minimal. Treatment of mice with anti-B7-DC mAb at the time of allergen challenge, but not at the time of sensitization, significantly increased their airway hyper-reactivity and eosinophilia. Such treatment also resulted in the increased production of IL-5 and IL-13, and decreased IFN-gamma production in the lungs and draining lymph node cells. These changes were diminished when mice were depleted of IFN-gamma by anti-IFN-gamma mAb pretreatment. Interestingly, treatment with anti-B7-H1 or anti-PD-1 mAb did not significantly affect the asthmatic response. These results suggest a unique role for B7-DC in the regulation of asthmatic response through an IFN-gamma-dependent, but PD-1-independent, mechanism.  相似文献   

20.
Negative costimulatory signals mediated via cell surface molecules such as CTLA-4 and programmed death 1 (PD-1) play a critical role in down-modulating immune responses and maintaining peripheral tolerance. However, their role in alloimmune responses remains unclear. This study examined the role of these inhibitory pathways in regulating CD28-dependent and CD28-independent CD4 and CD8 alloreactive T cells in vivo. CTLA-4 blockade accelerated graft rejection in C57BL/6 wild-type recipients and in a proportion of CD4(-/-) but not CD8(-/-) recipients of BALB/c hearts. The same treatment led to prompt rejection in CD28(-/-) and a smaller proportion of CD4(-/-)CD28(-/-) mice with no effect in CD8(-/-)CD28(-/-) recipients. These results indicate that the CTLA-4:B7 pathway provides a negative signal to alloreactive CD8(+) T cells, particularly in the presence of CD28 costimulation. In contrast, PD-1 blockade led to accelerated rejection of heart allografts only in CD28(-/-) and CD8(-/-)CD28(-/-) recipients. Interestingly, PD-1 ligand (PD-L1) blockade led to accelerated rejection in wild-type mice and in all recipients lacking CD28 costimulation. This effect was accompanied by expansion of IFN-gamma-producing alloreactive T cells and enhanced generation of effector T cells in rejecting allograft recipients. Thus, the PD-1:PD-L1 pathway down-regulates alloreactive CD4 T cells, particularly in the absence of CD28 costimulation. The differential effects of PD-1 vs PD-L1 blockade support the possible existence of a new receptor other than PD-1 for negative signaling through PD-L1. Furthermore, PD-1:PD-L1 pathway can regulate alloimmune responses independent of an intact CD28/CTLA-4:B7 pathway. Harnessing physiological mechanisms that regulate alloimmunity should lead to development of novel strategies to induce durable and reproducible transplantation tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号