首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tris-aromatic furanones (1?4) and related bis-aromatic diesters (5 and 6) isolated from the dark red ascidian Synoicum sp., were evaluated for their inhibitory activities toward Candida albicans isocitrate lyase (ICL). These studies led to the identification of compounds 1, 3, and 4 as potent ICL inhibitors, with IC50 values of 7.62, 17.16, and 10.36 μM, respectively. Growth phenotype of ICL deletion mutants and Northern blot analysis data indicated that compound 1 inhibits the ICL expression in C. albicans under C2 carbon utilizing condition.  相似文献   

2.
Bahamaolide A, a new macrocyclic lactone isolated from the culture of marine actinomycete Streptomyces sp. CNQ343, was evaluated for its inhibitory activity toward isocitrate lyase (ICL) from Candida albicans. These studies led to the identification of bahamaolide A as a potent ICL inhibitor with IC50 value of 11.82 μM. The growth phenotype of ICL deletion mutants and quantitative RT-PCR analyses indicated that this compound inhibits the ICL mRNA expression in C. albicans under C2-carbon-utilizing conditions. The present data highlight the potential for bahamaolide A treatment of C. albicans infections via inhibition of ICL activity.  相似文献   

3.
Bradyrhizobium japonicum, the nitrogen-fixing symbiotic partner of soybean, was grown on various carbon substrates and assayed for the presence of the glyoxylate cycle enzymes, isocitrate lyase and malate synthase. The highest levels of isocitrate lyase [165–170 nmol min–1 (mg protein)–1] were found in cells grown on acetate or β-hydroxybutyrate, intermediate activity was found after growth on pyruvate or galactose, and very little activity was found in cells grown on arabinose, malate, or glycerol. Malate synthase activity was present in arabinose- and malate-grown cultures and increased by only 50–80% when cells were grown on acetate. B. japonicum bacteroids, harvested at four different nodule ages, showed very little isocitrate lyase activity, implying that a complete glyoxylate cycle is not functional during symbiosis. The apparent K m of isocitrate lyase for d,l-isocitrate was fourfold higher than that of isocitrate dehydrogenase (61.5 and 15.5 μM, respectively) in desalted crude extracts from acetate-grown B. japonicum. When isocitrate lyase was induced, neither the V max nor the d,l-isocitrate K m of isocitrate dehydrogenase changed, implying that isocitrate dehydrogenase is not inhibited by covalent modification to facilitate operation of the glyoxylate cycle in B. japonicum. Received: 10 October 1997 / Accepted: 16 January 1998  相似文献   

4.
Euglena gracilis induced glyoxylate cycle enzymes when ethanol was fed as a sole carbon source. We purified, cloned and characterized a bifunctional glyoxylate cycle enzyme from E. gracilis (EgGCE). This enzyme consists of an N-terminal malate synthase (MS) domain fused to a C-terminal isocitrate lyase (ICL) domain in a single polypeptide chain. This domain order is inverted compared to the bifunctional glyoxylate cycle enzyme in Caenorhabditis elegans, an N-terminal ICL domain fused to a C-terminal MS domain. Purified EgGCE catalyzed the sequential ICL and MS reactions. ICL activity of purified EgGCE increased in the existence of acetyl-CoA at a concentration of micro-molar order. We discussed the physiological roles of the bifunctional glyoxylate cycle enzyme in these organisms as well as its molecular evolution.  相似文献   

5.
Candida albicans is an opportunistic pathogen that causes candidiasis in humans. In recent years, metabolic pathways in C. albicans have been explored as potential antifungal targets to treat candidiasis. The glyoxylate cycle, which enables C. albicans to survive in nutrient-limited host niches and its. Key enzymes (e.g., isocitrate lyase (ICL1), are particularly attractive antifungal targets for C. albicans. In this study, we used a new screening approach that better reflects the physiological environment that C. albicans cells experience during infection to identify potential inhibitors of ICL. Three compounds (caffeic acid (CAFF), rosmarinic acid (ROS), and apigenin (API)) were found to have antifungal activity against C. albicans when tested under glucose-depleted conditions. We further confirmed the inhibitory potential of these compounds against ICL using the ICL enzyme assay. Lastly, we assessed the bioavailability and toxicity of these compounds using Lipinski''s rule-of-five and ADMET analysis.  相似文献   

6.
The key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, have been detected in liver of foodstarved rats. Activities became measurable 3 days and peaked 5 days after the beginning of starvation. Both enzymes were found in the peroxisomal cell fraction after organelle fractionation by isopycnic centrifugation. Isocitrate lyase was purified 112-fold by ammonium sulfate precipitation, and chromotography on DEAE-cellulose and Toyopearl HW-65. The specific activity of the purified enzyme was 9.0 units per mg protein. The Km(isocitrate) was 68 μM and the pH optimum was at pH 7.4. Malate synthase was enriched 4-fold by ammonium sulfate precipitation. The enzyme had a Km(acetyl-CoA) of 0.2 μM, a Km(glyoxylate) of 3 mM and a pH optimum of 7.6.  相似文献   

7.
In previous work, we have demonstrated that oleate induces a massive proliferation of microbodies (peroxisomes) in Aspergillus nidulans. Although at a lower level, proliferation of peroxisomes also occurrs in cells growing under conditions that induce penicillin biosynthesis. Here, microbodies in oleate-grown A. nidulans cells were characterized by using several antibodies that recognize peroxisomal enzymes and peroxins in a broad spectrum of eukaryotic organisms such as yeast, and plant, and mammalian cells. Peroxisomes were immunolabeled by anti-SKL and anti-thiolase antibodies, which suggests that A. nidulans conserves both PTS1 and PTS2 import mechanisms. Isocitrate lyase and malate synthase, the two key enzymes of the glyoxylate cycle, were also localized in these organelles. In contrast to reports of Neurospora crassa, our results demonstrate that A. nidulans contains only one type of microbody (peroxisomes) that carry out the glyoxylate cycle and contain 3-ketoacyl-CoA thiolase and proteins with the C-terminal SKL tripeptide. Received: 4 March 1998 / Accepted: 2 July 1998  相似文献   

8.
Phosphoenolpyruvate carboxylase (PEPCx) has recently been found to be dispensable as an anaplerotic enzyme for growth and lysine production of Corynebacterium glutamicum. To clarify the role of the glyoxylate cycle as a possible alternative anaplerotic sequence, defined PEPCx- and isocitrate-lyase (ICL)-negative double mutants of C. glutamicum wild-type and of the l-lysine-producing strain MH20-22B were constructed by disruption of the respective genes. Analysis of these mutants revealed that the growth on glucose and the lysine productivity were identical to that of the parental strains. These results show that PEPCx and the glyoxylate cycle are not essential for growth of C. glutamicum on glucose and for lysine production and prove the presence of another anaplerotic reaction in this organism. To study the anaplerotic pathways in C. glutamicum further, H13CO3 -labeling experiments were performed with cells of the wild-type and a PEPCx-negative strain growing on glucose. Proton nuclear magnetic resonance analysis of threonine isolated from cell protein of both strains revealed the same labeling pattern: about 37% 13C enrichment in C-4 and 3.5% 13C enrichment in C-1. Since the carbon backbone of threonine corresponds to that of oxaloacetate, the label in C-4 of threonine positively identifies the anaplerotic pathway as a C3-carboxylation reaction that also takes place in the absence of PEPCx. Received: 27 December 1995 / Accepted: 20 March 1996  相似文献   

9.
10.
11.
In Saccharomyces cerevisiae, the glyoxylate cycle is controlled through the posttranslational regulation of its component enzymes, such as isocitrate lyase (ICL), which catalyzes the first unique step of the cycle. The ICL of S. cerevisiae (ScIcl1) is tagged for proteasomal degradation through ubiquitination by a multisubunit ubiquitin ligase (the glucose-induced degradation-deficient (GID) complex), whereas that of the pathogenic yeast Candida albicans (CaIcl1) escapes this process. However, the reason for the ubiquitin targeting specificity of the GID complex for ScIcl1 and not for CaIcl1 is unclear. To gain some insight into this, in this study, the crystal structures of apo ScIcl1 and CaIcl1 in complex with formate and the cryogenic electron microscopy structure of apo CaIcl1 were determined at a resolution of 2.3, 2.7, and 2.6 Å, respectively. A comparison of the various structures suggests that the orientation of N-terminal helix α1 in S. cerevisiae is likely key to repositioning of ubiquitination sites and contributes to the distinction found in C. albicans ubiquitin evasion mechanism. This finding gives us a better understanding of the molecular mechanism of ubiquitin-dependent ScIcl1 degradation and could serve as a theoretical basis for the research and development of anti-C. albicans drugs based on the concept of CaIcl1 ubiquitination.  相似文献   

12.
The ICL1 gene encoding isocitrate lyase was cloned from the dimorphic fungus Yarrowia lipolytica by complementation of a mutation (acuA3) in the structural gene of isocitrate lyase of Escherichia coli. The open reading frame of ICL1 is 1668 by long and contains no introns in contrast to currently sequenced genes from other filamentous fungi. The ICL1 gene encodes a deduced protein of 555 amino acids with a molecular weight of 62 kDa, which fits the observed size of the purified monomer of isocitrate lyase from Y. lipolytica. Comparison of the protein sequence with those of known pro- and eukaryotic isocitrate lyases revealed a high degree of homology among these enzymes. The isocitrate lyase of Y. lipolytica is more similar to those from Candida tropicalis and filamentous fungi than to Sacharomyces cerevisiae. This enzyme of Y. lipolytica has the putative glyoxysomal targeting signal S-K-L at the carboxy-terminus. It contains a partial repeat which is typical for eukaryotic isocitrate lyases but which is absent from the E. coli enzyme. Surprisingly, deletion of the ICL1 gene from the genome not only inhibits the utilization of acetate, ethanol, and fatty acids, but also reduces the growth rate on glucose.  相似文献   

13.
The specific activities of the tricarboxylic acid (TCA) cycle enzymes in Thiobacillus versutus were invariably lower after aerobic growth as compared to denitrifying growth in acetate- or succinate-limited chemostat cultures. Of the glyoxylate cycle enzymes, isocitrate lyase (ICL) activity was nil during aerobic and 76 nmol·min-1·mg-1 protein during denitrifying growth on acetate whereas malate synthase (MS) did not change. In succinate-grown cells ICL was always near nil. The change in ICL and MS was followed after pulse additions of acetate and nitrate to an aerobic acetate-limited chemostat culture made anaerobic prior to the first pulse. ICL remained nil during denitrifying growth after the first pulse but increased to 47 and 81 nmol ·min-1·mg-1 protein after the second and third pulse, respectively. MS remained unaltered. The appearance of ICL was dependent upon de novo protein synthesis. During transition in a steady state culture on acetate from oxygen to nitrate as terminal electron acceptor, denitrifying growth started after 0.6 volume replacements. The resumption of growth was concomitant with an increase in TCA cycle enzyme activities. ICL was observed only after two volume replacements. During the reverse transition, ICL disappeared at a rate twice the dilution rate. SDS polyacrylamide gelectrophoresis of cell-free extracts containing ICL showed a major protein band with a Rf value identical to purified ICL and a mol·wt. of 60,000. ICL from T. versutus was inhibited by 1.5 mM itaconate but not by 10 mM phosphoenolpyruvate. Its activity was dependent upon the presence of Mg2+ and cysteine.Abbreviations TCA Tricarboxylic acid - ICL isocitrate lyase - MS malate synthase - FPLC fast protein liquid chromatography - maximum specific oxygen consumption rate  相似文献   

14.
The key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were present in cell-free extracts of the phototrophic, green, thermophilic bacterium Chloroflexus aurantiacus grown with acetate as the sole organic carbon source.The optimum temperature of these enzymes was 40° C, and their specific activities were high enough to account for the observed growth rate. Lower levels of the enzymes were found in extracts from cells grown on a complete medium.Itaconate was shown to inhibit isocitrate lyase from C. aurantiacus 96% at a concentration of 0.25 mM and also had a profound effect on the growth of the organism on acetate, 0.25 mM inhibiting completely. Itaconate also inhibited the growth when added to the complex medium, but in this case much higher concentrations were required.  相似文献   

15.
16.
The largest forms of isocitrate lyase from Caenorhabditis elegans and Ascaris suum of 543,000 and 549,000 daltons, respectively, can be purified from three- to five-fold in excellent yield by pelleting from extracts at 160,000g for 4 hr. Isocitrate lyase in the pellet is much more stable toward proteolysis. Itaconate which both inhibits isocitrate lyase and suppresses the level of this enzyme in bacteria inhibits the partially purified isocitrate lyase from both C. elegans and A. suum. The inhibition is noncompetitive with respect to ds-isocitrate at one itaconate concentration. The Ki values at 30 C, pH 7.7, are 19 and 7.3 μM for the enzyme from C. elegans and A. suum, respectively. Itaconate inhibits the growth of C. elegans in random axenic as well as monoxenic cultures. At a concentration of 10 mM, itaconate is more effective in the inhibition of random axenic cultures than is oxalate, maleate, or succinate. At 60 mM itaconate, reproduction of C. elegans larvae is completely abolished.  相似文献   

17.
In the unicellular green alga Chlorogonium elongatum the level of isocitrate lyase (ICL), the rate of its synthesis and the level of ICL-mRNA measured by in vitro translation are considerably increased after addition of acetate to the culture medium of autotrophically precultured cells. Almost identical increases are obtained independently of whether the cells are cultured after the addition of acetate in the dark (heterotrophically) or in the light (mixotrophically). Transfer of heterotrophic cells to autotrophic conditions results in a fast decrease of ICL-mRNA and ICL protein, while a transfer to mixotrophic conditions causes no alterations in both molecular species. Therefore the concentration of ICL and its translatable mRNA is controlled only by acetate and is unaffected by light.  相似文献   

18.
The metabolic fate of acetate, produced during taurine catabolism in Pseudomonas aeruginosa TAU-5, appear to involve the glyoxylate cycle. Organisms grown on taurine have significantly higher levels of malate synthetase and isocitrate lyase than cells grown on nutrient broth, but were comparable to the levels found in acetate-grown organisms. Itaconate, an isocitrate lyase inhibitor, produced a prolonged lag phase and reduced the growth rate of organisms when it was present in the taurine or acetate growth medium. Ethylmethanesulfonate treatment of TAU-5 yielded mutant strains unable to grow on taurine or acetate as sole carbon sources, due to a lack of either malate synthetase or isocitrate lyase. Spontaneous revertants derived from these mutant strains regained the missing enzyme activity and the ability to grow on taurine or acetate.  相似文献   

19.
Three electrophoretically homogeneous isocitrate lyase (ICL) isoforms were obtained by 4-step purification from corn scutellum (ICL1 and ICL2) and green leaves (ICL). Their physicochemical, kinetic, and regulatory properties were analyzed. The molecular masses of ICL1, ICL2, and ICL isoforms determined by gel filtration are 164, 207, and 208 kDa, respectively. The proteins have homotetrameric quaternary structure with subunit molecular masses of 43, 48, and 47 kDa for ICL1, ICL2, and ICL, respectively. We found some differences in pH optimum, K m, and regulation by divalent metal cations between ICL1 and ICL2 and significant similarity of ICL2 and ICL. Based on these data, we suggest the participation of these isoforms in metabolic regulation of the glyoxylate cycle, organic acid metabolism during photorespiration in leaves and acidosis in corn seeds.  相似文献   

20.
The synthesis of isocitrate lyase was induced by the presence of ethanol in the chemostat reaching a specific activity of 200 mU·mg-1 at this induced state. In glucoselimited, derepressed cells, 20 mU·mg-1 were detected and under repressed conditions isocitrate lyase activity was not detected.The sensitivity of gluconeogenic enzymes: cytoplasmic malate dehydrogenase; fructose 1,6-bisphosphatase and isocitrate lyase as well as the mitochondrial enzymes NADH dehydrogenase and succinate cytochrome c oxidase to glucose and galactose repression were studied in chemostat cultures. Our results show that galactose was less effective as a repressor than glucose. Malate dehydrogenase was completely inactivated by glucose, whereas galactose only produced a 78% decrease of specific activity. Fructose 1,6-bisphosphatase and isocitrate lyase were completely inactivated by both sugars but at different rate. Glucose produced an 85% decrease of specific activity of the mitochondrial enzymes whereas galactose only decrease an 67%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号