首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular mechanism by which the membrane-embedded FO sector of the mitochondrial ATP synthase translocates protons, thus dissipating the transmembrane protonmotive force and leading to ATP synthesis, involves the neutralization of the carboxylate residues of the c-ring. Carboxylates are thought to constitute the binding sites for ion translocation. In order to cast light on this mechanism, we exploited N,N’-dicyclohexylcarbodiimide, which covalently binds to FO c-ring carboxylates, and ionophores which selectively modulate the transmembrane electric (Δφ) and chemical (ΔpH) gradients such as valinomycin, nigericin and dinitrophenol. ATP hydrolysis was evaluated in mitochondrial preparations and/or inside-out submitochondrial particles from mussel and mammalian tissues under different experimental conditions. The experiments pointed out striking similarities between mussel and mammalian mitochondrial ATP synthase. Our results support the hypothesis that the ATP synthase of Mytilus galloprovincialis induces intersubunit torque generation and translocates H+ by coordinating the hydronium ion (H3O+) in the ion binding site of FO. Our results are consistent with the hypothesis that in mussel mitochondria the main component of the electrochemical gradient driving proton flux and ATP synthesis is Δφ. Therefore, mussel FO probably contains a small c-ring, which implies a low bioenergetic cost of making ATP as in mammals. These features which make mussel mitochondria as efficient in ATP production as mammalian ones may be especially advantageous in facultative aerobic species which intermittently exploit mitochondrial respiration to generate ATP.  相似文献   

2.
Protons are transported from the mitochondrial matrix to the intermembrane space of mitochondria during the transfer of electrons to oxygen and shuttled back to the matrix by the a subunit and a ring of identical c subunits across the membrane domain (FO) of ATP synthase, which is coupled to ATP synthesis. A mutation (m.9176?T?>?G) of the mitochondrial ATP6 gene that replaces an universally conserved leucine residue into arginine at amino acid position 217 of human subunit a (aL217R) has been associated to NARP (Neuropathy, Ataxia and Retinitis Pigmentosa) and MILS (Maternally Inherited Leigh's Syndrome) diseases. We previously showed that an equivalent thereof in Saccharomyces cerevisiae (aL237R) severely impairs subunit a assembly/stability and decreases by >90% the rate of mitochondrial ATP synthesis. Herein we identified three spontaneous first-site intragenic suppressors (aR237M, aR237T and aR237S) that fully restore ATP synthase assembly. However, mitochondrial ATP synthesis rate was only partially recovered (40–50% vs wild type yeast). In light of recently described high-resolution yeast ATP synthase structures, the detrimental consequences of the aL237R change can be explained by steric and electrostatic hindrance with the universally conserved subunit a arginine residue (aR176) that is essential to FO activity. aL237 together with three other nearby hydrophobic residues have been proposed to prevent ion shortage between two physically separated hydrophilic pockets within the FO. Our results suggest that aL237 favors subunit c-ring rotation by optimizing electrostatic interaction between aR176 and an acidic residue in subunit c (cE59) known to be essential also to the activity of FO.  相似文献   

3.
Several human neurological disorders have been associated with various mutations affecting mitochondrial enzymes involved in cellular ATP production. One of these mutations, T9176C in the mitochondrial DNA (mtDNA), changes a highly conserved leucine residue into proline at position 217 of the mitochondrially encoded Atp6p (or a) subunit of the F1FO-ATP synthase. The consequences of this mutation on the mitochondrial ATP synthase are still poorly defined. To gain insight into the primary pathogenic mechanisms induced by T9176C, we have investigated the consequences of this mutation on the ATP synthase of yeast where Atp6p is also encoded by the mtDNA. In vitro, yeast atp6-T9176C mitochondria showed a 30% decrease in the rate of ATP synthesis. When forcing the F1FO complex to work in the reverse mode, i.e. F1-catalyzed hydrolysis of ATP coupled to proton transport out of the mitochondrial matrix, the mutant showed a normal proton-pumping activity and this activity was fully sensitive to oligomycin, an inhibitor of the ATP synthase proton channel. However, under conditions of maximal ATP hydrolytic activity, using non-osmotically protected mitochondria, the mutant ATPase activity was less efficiently inhibited by oligomycin (60% inhibition versus 85% for the wild type control). Blue Native Polyacrylamide Gel Electrophoresis analyses revealed that atp6-T9176C yeast accumulated rather good levels of fully assembled ATP synthase complexes. However, a number of sub-complexes (F1, Atp9p-ring, unassembled α-F1 subunits) could be detected as well, presumably because of a decreased stability of Atp6p within the ATP synthase. Although the oxidative phosphorylation capacity was reduced in atp6-T9176C yeast, the number of ATP molecules synthesized per electron transferred to oxygen was similar compared with wild type yeast. It can therefore be inferred that the coupling efficiency within the ATP synthase was mostly unaffected and that the T9176C mutation did not increase the proton permeability of the mitochondrial inner membrane.  相似文献   

4.
Synthesis of adenosine triphosphate (ATP) by the F1F0 ATP synthase involves a membrane-embedded rotary engine, the F0 domain, which drives the extra-membranous catalytic F1 domain. The F0 domain consists of subunits a1b2 and a cylindrical rotor assembled from 9–14 α-helical hairpin-shaped c-subunits. According to structural analyses, rotors contain 10 c-subunits in yeast and 14 in chloroplast ATP synthases. We determined the rotor stoichiometry of Ilyobacter tartaricus ATP synthase by atomic force microscopy and cryo-electron microscopy, and show the cylindrical sodium-driven rotor to comprise 11 c-subunits.  相似文献   

5.
《BBA》2023,1864(2):148962
F1Fo ATP synthase is a ubiquitous molecular motor that utilizes a rotary mechanism to synthesize adenosine triphosphate (ATP), the fundamental energy currency of life. The membrane-embedded Fo motor converts the electrochemical gradient of protons into rotation, which is then used to drive the conformational changes in the soluble F1 motor that catalyze ATP synthesis. In E. coli, the Fo motor is composed of a c10 ring (rotor) alongside subunit a (stator), which together provide two aqueous half channels that facilitate proton translocation. Previous work has suggested that Arg50 and Thr51 on the cytoplasmic side of each subunit c are involved in the proton translocation process, and positive charge is conserved in this region of subunit c. To further investigate the role of these residues and the chemical requirements for activity at these positions, we generated 13 substitution mutants and assayed their in vitro ATP synthesis, H+ pumping, and passive H+ permeability activities, as well as the ability of mutants to carry out oxidative phosphorylation in vivo. While polar and hydrophobic mutations were generally tolerated in either position, introduction of negative charge or removal of polarity caused a substantial defect. We discuss the possible effects of altered electrostatics on the interaction between the rotor and stator, water structure in the aqueous channel, and interaction of the rotor with cardiolipin.  相似文献   

6.
《BBA》2022,1863(5):148544
Proton-translocating FOF1 ATP synthase (F-ATPase) couples ATP synthesis or hydrolysis to transmembrane proton transport in bacteria, chloroplasts, and mitochondria. The primary function of the mitochondrial FOF1 is ATP synthesis driven by protonmotive force (pmf) generated by the respiratory chain. However, when pmf is low or absent (e.g. during anoxia), FOF1 consumes ATP and functions as a proton-pumping ATPase.Several regulatory mechanisms suppress the ATPase activity of FOF1 at low pmf. In yeast mitochondria they include special inhibitory proteins Inh1p and Stf1p, and non-competitive inhibition of ATP hydrolysis by MgADP (ADP-inhibition). Presumably, these mechanisms help the cell to preserve the ATP pool upon membrane de-energization. However, no direct evidence was presented to support this hypothesis so far.Here we report that a point mutation Q263L in subunit beta of Saccharomyces cerevisiae ATP synthase significantly attenuated ADP-inhibition of the enzyme without major effect on the rate of ATP production by mitochondria. The mutation also decreased the sensitivity of the enzyme ATPase activity to azide. Similar effects of the corresponding mutations were observed in earlier studies in bacterial enzymes. This observation indicates that the molecular mechanism of ADP-inhibition is probably the same in mitochondrial and in bacterial FOF1.The mutant yeast strain had lower growth rate and had a longer lag period preceding exponential growth phase when starved cells were transferred to fresh growth medium. However, upon the loss of mitochondrial DNA (ρ0) the βQ263L mutation effect was reversed: the βQ263L ρ0 mutant grew faster than the wild-type ρ0 yeast. The results suggest that ADP-inhibition might play a role in prevention of wasteful ATP hydrolysis in the mitochondrial matrix.  相似文献   

7.
Silke Schmidt 《BBA》2009,1787(6):691-952
The acetogenic bacterium Acetobacterium woodii uses a transmembrane electrochemical sodium ion potential for bioenergetic reactions. A primary sodium ion potential is established during carbonate (acetogenesis) as well as caffeate respiration. The electrogenic Na+ pump connected to the Wood-Ljungdahl pathway (acetogenesis) still remains to be identified. The pathway of caffeate reduction with hydrogen as electron donor was investigated and the only membrane-bound activity was found to be a ferredoxin-dependent NAD+ reduction. This exergonic electron transfer reaction may be catalyzed by the membrane-bound Rnf complex that was discovered recently and is suggested to couple exergonic electron transfer from ferredoxin to NAD+ to the vectorial transport of Na+ across the cytoplasmic membrane. Rnf may also be involved in acetogenesis. The electrochemical sodium ion potential thus generated is used to drive endergonic reactions such as flagellar rotation and ATP synthesis. The ATP synthase is a member of the F1FO class of enzymes but has an unusual and exceptional feature. Its membrane-embedded rotor is a hybrid made of FO and VO-like subunits in a stoichiometry of 9:1. This stoichiometry is apparently not variable with the growth conditions. The structure and function of the Rnf complex and the Na+ F1FO ATP synthase as key elements of the Na+ cycle in A. woodii are discussed.  相似文献   

8.
In eukaryotic and prokaryotic cells, F-ATP synthases provide energy through the synthesis of ATP. The chloroplast F-ATP synthase (CF1FO-ATP synthase) of plants is integrated into the thylakoid membrane via its FO-domain subunits a, b, b’ and c. Subunit c with a stoichiometry of 14 and subunit a form the gate for H+-pumping, enabling the coupling of electrochemical energy with ATP synthesis in the F1 sector.Here we report the crystallization and structure determination of the c14-ring of subunit c of the CF1FO-ATP synthase from spinach chloroplasts. The crystals belonged to space group C2, with unit-cell parameters a=144.420, b=99.295, c=123.51 Å, and β=104.34° and diffracted to 4.5 Å resolution. Each c-ring contains 14 monomers in the asymmetric unit. The length of the c-ring is 60.32 Å, with an outer ring diameter 52.30 Å and an inner ring width of 40 Å.  相似文献   

9.
The Na+ F1FO ATP synthase of the anaerobic, acetogenic bacterium Acetobacterium woodii has a unique FOVO hybrid rotor that contains nine copies of a FO-like c subunit and one copy of a VO-like c 1 subunit with one ion binding site in four transmembrane helices whose cellular function is obscure. Since a genetic system to address the role of different c subunits is not available for this bacterium, we aimed at a heterologous expression system. Therefore, we cloned and expressed its Na+ F1FO ATP synthase operon in Escherichia coli. A Δatp mutant of E. coli produced a functional, membrane-bound Na+ F1FO ATP synthase that was purified in a single step after inserting a His6-tag to its β subunit. The purified enzyme was competent in Na+ transport and contained the FOVO hybrid rotor in the same stoichiometry as in A. woodii. Deletion of the atpI gene from the A. woodii operon resulted in a loss of the c ring and a mis-assembled Na+ F1FO ATP synthase. AtpI from E. coli could not substitute AtpI from A. woodii. These data demonstrate for the first time a functional production of a FOVO hybrid rotor in E. coli and revealed that the native AtpI is required for assembly of the hybrid rotor.  相似文献   

10.
For functional characterization, we isolated the F1FO-ATP synthase of the thermophilic cyanobacterium Thermosynechococcus elongatus. Because of the high content of phycobilisomes, a combination of dye-ligand chromatography and anion exchange chromatography was necessary to yield highly pure ATP synthase. All nine single F1FO subunits were identified by mass spectrometry. Western blotting revealed the SDS stable oligomer of subunits c in T. elongatus. In contrast to the mass archived in the database (10,141 Da), MALDI-TOF-MS revealed a mass of the subunit c monomer of only 8238 Da. A notable feature of the ATP synthase was its ability to synthesize ATP in a wide temperature range and its stability against chaotropic reagents. After reconstitution of F1FO into liposomes, ATP synthesis energized by an applied electrochemical proton gradient demonstrated functional integrity. The highest ATP synthesis rate was determined at the natural growth temperature of 55 °C, but even at 95 °C ATP production occurred. In contrast to other prokaryotic and eukaryotic ATP synthases which can be disassembled with Coomassie dye into the membrane integral and the hydrophilic part, the F1FO-ATP synthase possessed a particular stability. Also with the chaotropic reagents sodium bromide and guanidine thiocyanate, significantly harsher conditions were required for disassembly of the thermophilic ATP synthase.  相似文献   

11.
We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.  相似文献   

12.
H+-FOF1-ATP synthase couples proton flow through its membrane portion, FO, to the synthesis of ATP in its headpiece, F1. Upon reversal of the reaction the enzyme functions as a proton pumping ATPase. Even in the simplest bacterial enzyme the ATPase activity is regulated by several mechanisms, involving inhibition by MgADP, conformational transitions of the ε subunit, and activation by protonmotive force. Here we report that the Met23Lys mutation in the γ subunit of the Rhodobacter capsulatus ATP synthase significantly impaired the activation of ATP hydrolysis by protonmotive force. The impairment in the mutant was due to faster enzyme deactivation that was particularly evident at low ATP/ADP ratio. We suggest that the electrostatic interaction of the introduced γLys23 with the DELSEED region of subunit β stabilized the ADP-inhibited state of the enzyme by hindering the rotation of subunit γ rotation which is necessary for the activation.  相似文献   

13.
The insertion of inner membrane proteins in Escherichia coli occurs almost exclusively via the SecYEG pathway, while some membrane proteins require the membrane protein insertase YidC. In vitro analysis demonstrates that subunit a of the F1F0 ATP synthase (F0a) is strictly dependent on Ffh, SecYEG and YidC for its membrane insertion but independent of the proton motive force. The insertion of the first transmembrane segment of F0a also depends on Ffh and SecYEG but not on YidC, whereas the insertion is strongly dependent on the proton motive force, unlike the full-length F0a protein. These data demonstrate an extensive role of YidC in the assembly of the F0 sector of the F1F0 ATP synthase.  相似文献   

14.
The mitochondrial ATP synthase is a molecular motor that drives the phosphorylation ofADP to ATP. The yeast mitochondrial ATP synthase is composed of at least 19 differentpeptides, which comprise the F1 catalytic domain, the F0 proton pore, and two stalks, oneof which is thought to act as a stator to link and hold F1 to F0, and the other as a rotor.Genetic studies using yeast Saccharomyces cerevisiae have suggested the hypothesis thatthe yeast mitochondrial ATP synthase can be assembled in the absence of 1, and even 2, ofthe polypeptides that are thought to comprise the rotor. However, the enzyme complexassembled in the absence of the rotor is thought to be uncoupled, allowing protons to freelyflow through F0 into the mitochondrial matrix. Left uncontrolled, this is a lethal process andthe cell must eliminate this leak if it is to survive. In yeast, the cell is thought to lose ordelete its mitochondrial DNA (the petite mutation) thereby eliminating the genes encodingessential components of F0. Recent biochemical studies in yeast, and prior studies in E. coli,have provided support for the assembly of a partial ATP synthase in which the ATP synthaseis no longer coupled to proton translocation.  相似文献   

15.
FOF1 ATP synthases are rotary nanomotors that couple proton translocation across biological membranes to the synthesis/hydrolysis of ATP. During catalysis, the peripheral stalk, composed of two b subunits and subunit δ in Escherichia coli, counteracts the torque generated by the rotation of the central stalk. Here we characterize individual interactions of the b subunits within the stator by use of monoclonal antibodies and nearest neighbor analyses via intersubunit disulfide bond formation. Antibody binding studies revealed that the C-terminal region of one of the two b subunits is principally involved in the binding of subunit δ, whereas the other one is accessible to antibody binding without impact on the function of FOF1. Individually substituted cysteine pairs suitable for disulfide cross-linking between the b subunits and the other stator subunits (b-α, b-β, b-δ, and b-a) were screened and combined with each other to discriminate between the two b subunits (i.e. bI and bII). The results show the b dimer to be located at a non-catalytic α/β cleft, with bI close to subunit α, whereas bII is proximal to subunit β. Furthermore, bI can be linked to subunit δ as well as to subunit a. Among the subcomplexes formed were a-bI-α, bII-β, α-bI-bII-β, and a-bI-δ. Taken together, the data obtained define the different positions of the two b subunits at a non-catalytic interface and imply that each b subunit has a different role in generating stability within the stator. We suggest that bI is functionally related to the single b subunit present in mitochondrial ATP synthase.  相似文献   

16.
H+-transporting F1Fo ATP synthase catalyzes the synthesis of ATP via coupled rotary motors within Fo and F1. H+ transport at the subunit a–c interface in trans-membranous Fo drives rotation of the c-ring within the membrane, with subunit c being bound in a complex with the γ and ε subunits extending from the membrane. Finally, the rotation of subunit γ within the α3β3 sector of F1 mechanically drives ATP synthesis within the catalytic sites. In this review, we propose and provide evidence supporting the route of proton transfer via half channels from one side of the membrane to the other, and the mechanism of gating H+ binding to and release from Asp61 of subunit c, via conformational movements of Arg210 in subunit a. We propose that protons are gated from the inside of a four-helix bundle at the periplasmic side of subunit a to drive protonation of cAsp61, and that this gating movement is facilitated by the swiveling of trans-membrane helices (TMHs) 4 and 5 at the site of interaction with cAsp61 on the periphery of the c-ring. Proton release to the cytoplasmic half channel is facilitated by the movement of aArg210 as a consequence of this proposed helical swiveling. Finally, release from the cytoplasmic half channel is mediated by residues in a complex of interacting extra-membraneous loops formed between TMHs of both subunits a and c. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

17.
The impact of the mitochondrial permeability transition (MPT) on cellular physiology is well characterized. In contrast, the composition and mode of action of the permeability transition pore complex (PTPC), the supramolecular entity that initiates MPT, remain to be elucidated. Specifically, the precise contribution of the mitochondrial F1FO ATP synthase (or subunits thereof) to MPT is a matter of debate. We demonstrate that F1FO ATP synthase dimers dissociate as the PTPC opens upon MPT induction. Stabilizing F1FO ATP synthase dimers by genetic approaches inhibits PTPC opening and MPT. Specific mutations in the F1FO ATP synthase c subunit that alter C‐ring conformation sensitize cells to MPT induction, which can be reverted by stabilizing F1FO ATP synthase dimers. Destabilizing F1FO ATP synthase dimers fails to trigger PTPC opening in the presence of mutants of the c subunit that inhibit MPT. The current study does not provide direct evidence that the C‐ring is the long‐sought pore‐forming subunit of the PTPC, but reveals that PTPC opening requires the dissociation of F1FO ATP synthase dimers and involves the C‐ring.  相似文献   

18.
The yeast mitochondrial ATP synthase is an assembly of 28 subunits of 17 types of which 3 (subunits 6, 8, and 9) are encoded by mitochondrial genes, while the 14 others have a nuclear genetic origin. Within the membrane domain (FO) of this enzyme, the subunit 6 and a ring of 10 identical subunits 9 transport protons across the mitochondrial inner membrane coupled to ATP synthesis in the extra-membrane structure (F1) of ATP synthase. As a result of their dual genetic origin, the ATP synthase subunits are synthesized in the cytosol and inside the mitochondrion. How they are produced in the proper stoichiometry from two different cellular compartments is still poorly understood. The experiments herein reported show that the rate of translation of the subunits 9 and 6 is enhanced in strains with mutations leading to specific defects in the assembly of these proteins. These translation modifications involve assembly intermediates interacting with subunits 6 and 9 within the final enzyme and cis-regulatory sequences that control gene expression in the organelle. In addition to enabling a balanced output of the ATP synthase subunits, these assembly-dependent feedback loops are presumably important to limit the accumulation of harmful assembly intermediates that have the potential to dissipate the mitochondrial membrane electrical potential and the main source of chemical energy of the cell.  相似文献   

19.
Interactions between subunit a and oligomeric subunit c are essential for the coupling of proton translocation to rotary motion in the ATP synthase. A pair of previously described mutants, R210Q/Q252R and P204T/R210Q/Q252R [L.P. Hatch, G.B. Cox and S.M. Howitt, The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity, J. Biol. Chem. 270 (1995) 29407-29412] has been constructed and further analyzed. These mutants, in which the essential arginine of subunit a, R210, was switched with a conserved glutamine residue, Q252, are shown here to be capable of both ATP synthesis by oxidative phosphorylation, and ATP-driven proton translocation. In addition, lysine can replace the arginine at position 252 with partial retention of both activities. The pH dependence of ATP-driven proton translocation was determined after purification of mutant enzymes, and reconstitution into liposomes. Proton translocation by the lysine mutant, and to a lesser extent the arginine mutant, dropped off sharply above pH 7.5, consistent with the requirement for a positive charge during function. Finally, the rates of ATP synthesis and of ATP-driven proton translocation were completely inhibited by treatment with DCCD (N,N′-dicyclohexylcarbodiimide), while rates of ATP hydrolysis by the mutants were not significantly affected, indicating that DCCD modification disrupts the F1-Fo interface. The results suggest that minimal requirements for proton translocation by the ATP synthase include a positive charge in subunit a and a weak interface between subunit a and oligomeric subunit c.  相似文献   

20.

Background

The macrolide antibiotics oligomycin, venturicidin and bafilomycin, sharing the polyketide ring and differing in the deoxysugar moiety, are known to block the transmembrane ion channel of ion-pumping ATPases; oligomycins are selective inhibitors of mitochondrial ATP synthases.

Methods

The inhibition mechanism of macrolides was explored on swine heart mitochondrial F1FO-ATPase by kinetic analyses. The amphiphilic membrane toxicant tributyltin (TBT) and the thiol reducing agent dithioerythritol (DTE) were used to elucidate the nature of the macrolide–enzyme interaction.

Results

When individually tested, the macrolide antibiotics acted as uncompetitive inhibitors of the ATPase activity. Binary mixtures of macrolide inhibitors I1 and I2 pointed out a non-exclusive mechanism, indicating that each macrolide binds to its binding site on the enzyme. When co-present, the two macrolides acted synergistically in the formed quaternary complex (ESI1I2), thus mutually strengthening the enzyme inhibition. The enzyme inhibition by macrolides displaying a shared mechanism was dose-dependently reduced by TBT ≥ 1 μM. The TBT-driven enzyme desensitization was reversed by DTE.

Conclusions

The macrolides tested share uncompetitive inhibition mechanism by binding to a specific site in a common macrolide-binding region of FO. The oxidation of highly conserved thiols in the ATP synthase c-ring of FO weakens the interaction between the enzyme and the macrolides. The native macrolide-inhibited enzyme conformation can be restored by reducing crucial thiols oxidized by TBT.

General significance

The findings, by elucidating the macrolide inhibitory mechanism on FO, indirectly cast light on the F1FO torque generation involving crucial amino acid residues and may address drug design and antimicrobial therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号