首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study describes an analysis of different treatments that influence the relative content and the midpoint potential of HP Cyt b559 in PS II membrane fragments from higher plants. Two basically different types of irreversible modification effects are distinguished: the HP form of Cyt b559 is either predominantly affected when the heme group is oxidized (“O-type” effects) or when it is reduced (“R-type” effects). Transformation of HP Cyt b559 to lower potential redox forms (IP and LP forms) by the “O-type” mechanism is induced by high pH and detergent treatments. In this case the effects consist of a gradual decrease in the relative content of HP Cyt b559 while its midpoint potential remains unaffected. Transformation of HP Cyt b559 via an “R-type” mechanism is caused by a number of exogenous compounds denoted L: herbicides, ADRY reagents and tetraphenylboron. These compounds are postulated to bind to the PS II complex at a quinone binding site designated as QC which interacts with Cyt b559 and is clearly not the QB site. Binding of compounds L to the QC site when HP Cyt b559 is oxidized gives rise to a gradual decrease in the Em of HP Cyt b559 with increasing concentration of L (up to 10 Kox(L) values) while the relative content of HP Cyt b559 is unaffected. Higher concentrations of compounds L required for their binding to QC site when HP Cyt b559 is reduced (described by Kred(L)) induce a conversion of HP Cyt b559 to lower potential redox forms (“R-type” transformation). Two reaction pathways for transitions of Cyt b559 between the different protein conformations that are responsible for the HP and IP/LP redox forms are proposed and new insights into the functional regulation of Cyt b559 via the QC site are discussed.  相似文献   

2.
“Reduced minus oxidized” difference extinction coefficients Δ? in the α-bands of Cyt b559 and Cyt c550 were determined by using functionally and structurally well-characterized PS II core complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus. Values of 25.1 ± 1.0 mM−1 cm−1 and 27.0 ± 1.0 mM−1 cm−1 were obtained for Cyt b559 and Cyt c550, respectively. Anaerobic redox titrations covering the wide range from −250 up to +450 mV revealed that the heme groups of both Cyt b559 and Cyt c550 exhibit homogenous redox properties in the sample preparation used, with Em values at pH 6.5 of 244 ± 11 mV and −94 ± 21 mV, respectively. No HP form of Cyt b559 could be detected. Experiments performed on PS II membrane fragments of higher plants where the content of the high potential form of Cyt b559 was varied by special treatments (pH, heat) have shown that the α-band extinction of Cyt b559 does not depend on the redox form of the heme group. Based on the results of this study the Cyt b559/PSII stoichiometry is inferred to be 1:1 not only in thermophilic cyanobacteria as known from the crystal structure but also in PSII of plants. Possible interrelationships between the structure of the QB site and the microenvironment of the heme group of Cyt b559 are discussed.  相似文献   

3.
Cytochrome b559 (Cyt b559) is a well-known intrinsic component of Photosystem II (PS II) reaction center in all photosynthetic oxygen-evolving organisms, but its physiological role remains unclear. This work reports the response of the two redox forms of Cyt b559 (i.e. the high- (HP) and low-potential (LP) forms) to inhibition of the donor or acceptor side of PS II. The photooxidation of HP Cyt b559 induced by red light at room temperature was pH-dependent under conditions in which electron flow from water was diminished. This photooxidation was observed only at pH values higher than 7.5. However, in the presence of 1 M CCCP, a limited oxidation of HP Cyt b559 was observed at acidic pH, At pH 8.5 and in the presence of the protonophore, this photooxidation of the HP form was accompanied by its partial transformation into the LP form. On the other hand, a partial photoreduction of LP Cyt b559 was induced by red light under aerobic conditions when electron transfer through the primary quinone acceptor QA was impaired by strong irradiation in the presence of DCMU. This photoreduction was enhanced at acidic pH values. To the best of our knowledge, this is the first time that both photoreduction and photooxidation of Cyt b559 is described under inhibitory conditions using the same kind of membrane preparations. A model accommodating these findings is proposed.Abbreviations CCCP carbonylcyanide 3-chlorophenylhydrazone - Cyt cytochrome - DCBQ 2,5-dichloro-p-benzoquinone - DCMU dichlorophenyldimethylurea - E m midpoint redox potential - HP and LP high- and low-potential forms of Cyt b559 - P680 primary donor - IA acceptor side inhibition - ID donor side inhibition - Pheo pheophytin - PS II photosystem II - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II  相似文献   

4.
Peter R. Rich  Derek S. Bendall 《BBA》1980,591(1):153-161
1. In fresh chloroplasts, three b-type cytochromes exist. These are b-559HP (λmax, 559 nm; Em at pH 7, +370 mV; pH-independent Em), b-559LP (λmax, 559 nm; Em at pH 7, +20 mV; pH-independent Em) and b-563 (λmax, 563 nm; Em at pH 7, ?110 mV; pH-independent Em). b-559HP may be converted to a lower potential form (λmax, 559 nm; Em at pH 7, +110 mV; pH-independent Em).2. In catalytically active b-f particle preparations, three cytochromes exist. These are cytochrome f (λmax, 554 nm; Em at pH 7, +375 mV, pK on oxidised cytochrome at pH 9), b-563 (λmax, 563 nm; Em at pH 7, ?90 mV, small pH-dependence of Em) and a b-559 species (λmax, 559 nm, Em at pH 7, +85 mV; pH-independent Em).3. A positive method of demonstration and estimation of b-559LP in fresh chloroplasts is described which involves the use of menadiol as a selective reductant of b-559LP.  相似文献   

5.
This study describes an analysis of different treatments that influence the relative content and the midpoint potential of HP Cyt b559 in PS II membrane fragments from higher plants. Two basically different types of irreversible modification effects are distinguished: the HP form of Cyt b559 is either predominantly affected when the heme group is oxidized ("O-type" effects) or when it is reduced ("R-type" effects). Transformation of HP Cyt b559 to lower potential redox forms (IP and LP forms) by the "O-type" mechanism is induced by high pH and detergent treatments. In this case the effects consist of a gradual decrease in the relative content of HP Cyt b559 while its midpoint potential remains unaffected. Transformation of HP Cyt b559 via an "R-type" mechanism is caused by a number of exogenous compounds denoted L: herbicides, ADRY reagents and tetraphenylboron. These compounds are postulated to bind to the PS II complex at a quinone binding site designated as Q(C) which interacts with Cyt b559 and is clearly not the Q(B) site. Binding of compounds L to the Q(C) site when HP Cyt b559 is oxidized gives rise to a gradual decrease in the E(m) of HP Cyt b559 with increasing concentration of L (up to 10 K(ox)(L) values) while the relative content of HP Cyt b559 is unaffected. Higher concentrations of compounds L required for their binding to Q(C) site when HP Cyt b559 is reduced (described by K(red)(L)) induce a conversion of HP Cyt b559 to lower potential redox forms ("R-type" transformation). Two reaction pathways for transitions of Cyt b559 between the different protein conformations that are responsible for the HP and IP/LP redox forms are proposed and new insights into the functional regulation of Cyt b559 via the Q(C) site are discussed.  相似文献   

6.
Shibamoto T  Kato Y  Watanabe T 《FEBS letters》2008,582(10):1490-1494
The redox potential of cytochrome b559 (Cyt b559) in the D1-D2-Cyt b559 complex from spinach has been determined to be +90+/-2mV vs. SHE at pH 6.0, by thin-layer cell spectroelectrochemistry for the first time. The redox potential, corresponding uniquely to the so-called "low-potential form", exhibited a sigmoidal pH-dependence from pH 4.0 to 9.0, ranging from +115 to +50mV. An analysis of the pH-dependence based on model equations suggests that two histidine residues coordinating to the heme iron in the protein subunits may exert electrostatic influence on the redox potential of Cyt b559.  相似文献   

7.
Peter Horton  Neil R. Baker 《BBA》1980,592(3):559-564
Fluorescence induction at ?196°C has been monitored in chloroplasts rapidly frozen after poising at different redox potentials at room temperature. It was found that, as at room temperature, the initial level of fluorescence observed upon shutter opening (Fo), relative to the final level observed after 10 seconds of illumination (Fm) increased as the redox potential of the chloroplasts was lowered. Redox titration revealed the presence of two quenching components with Em,7.8 at ?70 mV and ?275 mV accounting for approx. 75% and 25% of the variable fluorescence (Fv). Parallel observation of fluorescence yield at room temperature similarly gave two components, with Em,7.8 at ?95 mV and ?290 mV, also accounting for approx. 75% and 25%. Simultaneous measurement of fluorescence emission at ?196°C at 695 nm and 735 nm indicated that both emissions are quenched by the same redox components.  相似文献   

8.
pH-dependent inactivation of Photosystem (PS) II and related quenching of chlorophyll-a-fluorescence have been investigated in isolated thylakoids and PS II-particles and related to calcium release at the donor side of PS II. The capacity of oxygen evolution (measured under light saturation) decreases when the pH is high and the pH in the thylakoid lumen decreases below 5.5. Oxygen evolution recovers upon uncoupling. The pH-response of inactivation can be described by a 1 H+-transition with an apparent pK-value of about 4.7. The yield of variable fluorescence decreases in parallel to the inactivation of oxygen evolution. pH-dependent quenching requires light and can be inhibited by DCMU. In PS II-particles, inactivation is accompanied by a reversible release of Ca2+-ions (one Ca2+ released per 200 Chl). In isolated thylakoids, where a pH was created by ATP-hydrolysis, both inactivation of oxygen evolution (and related fluorescence quenching) by internal acidification and the recovery of that inactivation can be suppressed by calcium-channel blockers. In the presence of the Ca2+-ionophore A23187, recovery of Chl-fluorescence (after relaxation of the pH) is stimulated by external Ca2+ and retarded by EGTA. As shown previously (Krieger and Weis 1993), inactivation of oxygen evolution at low pH is accompanied by an upward shift of the midpoint redox-potential, Em, of QA. Here, we show that in isolated PS II particles the pH-dependent redox-shift (about 160 mV, as measured from redox titration of Chl-fluorescence) is suppressed by Ca2+-channel blockers and DCMU. When a redox potential of –80 to –120mV was established in a suspension of isolated thylakoids, the primary quinone acceptor, QA, was largely reduced in presence of a pH (created by ATP-hydrolysis) but oxidized in presence of an uncoupler. Ca2+-binding at the lumen side seems to control redox processes at the lumen- and stroma-side of PS II. We discuss Ca2+-release to be involved in the physiological process of high energy quenching.  相似文献   

9.
A series of experiments have been conducted with isolated reaction centers of photosystem two (PS II) with the aim to elucidate the functional role of cytochrome (Cyt b 559). At pH 6.5 it was found that Cyt b 559 was reversibly photoreduced by red actinic light when Mn2+ was present as an electron donor while at pH 8.5 a photo-oxidation was observed under the same lighting conditions, which was dark reversible in the presence of hydroquinone. These pH dependent light induced changes were measured under anaerobic conditions and correlated with changes in the relative levels of high (HP) and low (LP) potential forms of the cytochrome. At pH 6.5 the cytochrome was mainly in its LP form while at pH 8.5 a significant proportion was converted to the HP form as detected by dark titrations with hydroquinone. This pH dependent difference in the levels of HP and LP Cyt b 559 was also detected when bright white light was used to monitor the level of the LP form using a novel reaction involving direct electron donation from the flavin of glucose oxidase (present in the medium and used together with glucose and catalase as an oxygen trap). The results suggest that PS II directly oxidises and reduces the HP and LP forms, respectively and that the extent of these photo-reactions is dependent on the relative levels of the two forms, which are in turn governed by the pH. This conclusion is interpreted in terms of the model presented previously (Barber J and De Las Rivas J (1993) Proc Natl Acad Sci USA 90: 10942–10946) whereby the pH induced effect is considered as a possible mechanism by which interconversion of LP and HP forms of Cyt b 559 is achieved. In agreement with this was the finding that as the extent of photo-oxidisable HPCyt b 559 increases, with increasing pH, the rate of irreversible photo-oxidation of -carotene decreases, a result expected if the HP form protects against donor side photoinhibition.Abbreviations -car -carotene - CCCP carbonylcyanide m-chloro-phenylhydrazone - Chl chlorophyll - Cyt b 559 cytochrome b 559 - HPCyt b 559 high potential form of cytochrome b 559 which is reducible by hydroquinone - LPCyt b 559 low potential form of cytochrome b 559 which is non-reducible by hydroquinone - D1 and D2 products of the psbA and psbD genes, respectively - LHC II light-harvesting chlorophyll protein complex associated with PS II - Mes 2-(N-morpholino) ethanesulphonic acid - P680 primary electron donor of PS II - Pheo pheophytin - PQ plastoquinone - PS II Photosystem II - QA first stable quinone electron acceptor of PS II - QB second stable quinone electron acceptor of PS II - RC reaction center - SDS sodium dodecyl sulphate - SiMo silicomolybdate - Tris tris(hydroxymethyl) amino methane - YZ and YD tyrosine residues 161 in D1 and D2 proteins of the PS II RC which act as secondary electron donors to P680  相似文献   

10.
The mode of photoinhibition as a function of the ambient redox potential (Eambient) in suspensions of Tris-washed PS II membrane fragments has been analyzed by monitoring flash-induced absorption changes at 830 nm. It was found: (a) the detectable initial amplitude, ΔAtotal 830, as a measure of the capacity to form the `stable' radical pair, P680 Q−ċ A, drastically decreases during a 10 min photoinhibition at Eambient values below +350 mV; (b) conversely, the normalized extent of the 18 μs relaxation kinetics, ΔA18 μ s 830 as a measure of the electron transfer from YZ to P680 becomes highly susceptible to light stress when Eambient exceeds values of about +350 mV; (c) effects of the ambient redox potentials are highly pronounced during light exposure under anaerobic conditions, while much smaller differences arise under aerobic conditions; (d) the extent of damage does not correlate with the total concentration of K3[Fe(CN)6] and K4[Fe(CN)6] in the suspension during photoinhibition but rather depends on the Em-values; (e) qualitatively similar features are observed when the redox buffer system K3[Fe(CN)6]/Na2S2O4 is replaced by K2[IrCl6]/Na2S2O4; (f) the characteristic Eambient-dependence of photoinhibition is observed only under anaerobic conditions. The results are discussed with respect to different redox components that might be involved, including brief comments on a possible role of Cyt b559. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
The vibrational infrared absorption changes associated with the oxidation of cytochrome b559 (Cyt b559) have been characterized. In photosystem II (PS II) enriched membranes, low-potential (LP) and high-potential (HP) Cyt b559 were investigated by light-induced FTIR difference spectroscopy. The redox transition of isolated Cyt b559 is characterized by protein electrochemistry. On the basis of a model of the assembly of Cyt b559 with the two axial Fe ligands being histidine residues of two distinct polypeptides, each forming a transmembrane alpha-helix [Cramer, W.A., Theg, S.M., & Widger, W.R. (1986) Photosynth. Res. 10, 393-403], the bisimidazole and bismethylimidazole complexes of Fe protoporphyrin IX were electrochemically oxidized and reduced to detect the IR oxidation markers of the heme and its two axial ligands. Major bands at 1674/1553, 1535, and 1240 cm-1 are tentatively assigned to nu 37 (CaCm), nu 38-(CbCb) and delta (CmH) modes, respectively; other bands at 1626, 1613, 1455, 1415, and 1337 cm-1 are assigned to porphyrin skeletal and vinyl modes. Modes at 1103 and 1075/1066 cm-1 are assigned to the 4-methylimidazole and imidazole ligands, respectively. For the isolated Cyt b559, it is shown that both the heme (at 1556-1535, 1337, and 1239 cm-1), the histidine ligands at 1104 cm-1 and the protein (between 1600 and 1700 cm-1 and at 1545 cm-1) are affected by the charge stabilization. The excellent agreement between model compounds and isolated Cyt b559 reinforces the validity of the model of a heme iron coordinated to two histidine residues for Cyt b559. A differential signal at 1656/1641 cm-1 is assigned to peptide C = O mode(s). We speculate that this signal reflects the change in strength of a hydrogen bond formed between the histidine ligand(s) and the polypeptide backbone upon oxidoreduction of the cytochrome. In PS II membranes, the signals characteristic of Cyt b559 photooxidation are found at 1660/1652 and 1625 cm-1, for both the high- and low-potential forms. The differences observed in the amplitude of the 1660/1652-cm-1 band, at 1700 and 1530-1510 cm-1 in the light-induced FTIR difference spectra of Cyt b559 HP and LP, show that the mechanisms of heme oxidation in vivo imply different molecular processes for the two forms Cyt b559 HP and LP.  相似文献   

12.
A model of heme–quinone redox interaction has been developed for cytochrome b559 in photosystem II. The quinone QC in the singly protonated form may function as an interacting quinone. The electrostatic effect between the charges on the heme iron of the cytochrome and QCH leads to appearance of three forms of the cytochrome with different redox potentials. A simple and effective mechanism of redox regulation of the electron transfer pathways in photosystem II is proposed.  相似文献   

13.
Spinach photosystem II membranes that had been depleted of the Mn cluster contained four forms of cytochrome (Cyt) b559, namely, high-potential (HP), HP', intermediate-potential (IP) and low-potential (LP) forms that exhibited the redox potentials of +400, +310, +170 and +35 mV, respectively, in potentiometric titration. When the membranes were illuminated with flashing light in the presence of 0.1 mM Mn2+, the IP form was converted to the HP' form by two flashes and then the HP' form was converted to the HP form by an additional flash. The quantum efficiency of the first conversion appeared to be quite high since the conversion was almost complete after two flashes. By contrast, the second conversion proceeded with low quantum efficiency and 40 flashes were required for completion. The effects of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) suggested that the first conversion did not require electron transfer from QA to QB while the second conversion had an absolute requirement for it. It was also suggested that the first conversion involved the reduction of the heme of Cyt b559, probably by QA-, and we propose that direct reduction by QA- induces a shift in the redox potential of the heme. The second conversion was also accompanied by the reduction of heme but it appeared that this conversion did not necessarily involve the reduction. The effects of DCMU on the reduction of heme suggested that the heme became reducible by QB- after the first conversion had been completed. This observation implies that the efficiency of electron transfer from QA to QB increased upon the conversion of the IP form to the HP' form, and we propose that restoration of the high-potential forms of Cyt b559 itself acts to make the acceptor side of photosystem II functional.  相似文献   

14.
Hiroshi Ishikita 《BBA》2007,1767(11):1300-1309
In bacterial photosynthetic reaction centers (bRC), the electron is transferred from the special pair (P) via accessory bacteriochlorophyll (BA), bacteriopheopytin (HA), the primary quinone (QA) to the secondary quinone (QB). Although the non-heme iron complex (Fe complex) is located between QA and QB, it was generally supposed not to be redox-active. Involvement of the Fe complex in electron transfer (ET) was proposed in recent FTIR studies [A. Remy and K. Gerwert, Coupling of light-induced electron transfer to proton uptake in photosynthesis, Nat. Struct. Biol. 10 (2003) 637-644]. However, other FTIR studies resulted in opposite results [J. Breton, Steady-state FTIR spectra of the photoreduction of QA and QB in Rhodobacter sphaeroides reaction centers provide evidence against the presence of a proposed transient electron acceptor X between the two quinones, Biochemistry 46 (2007) 4459-4465]. In this study, we calculated redox potentials of QA/B (Em(QA/B)) and the Fe complex (Em(Fe)) based on crystal structure of the wild-type bRC (WT-bRC), and we investigated the energetics of the system where the Fe complex is assumed to be involved in the ET. Em(Fe) in WT-bRC is much less pH-dependent than that in PSII. In WT-bRC, we observed significant coupling of ET with Glu-L212 protonation upon oxidation of the Fe complex and a dramatic Em(Fe) downshift by 230 mV upon formation of QA (but not QB) due to the absence of proton uptake of Glu-L212. Changes in net charges of the His ligands of the Fe complex appear to be the nature of the redox event if we assume the involvement of the Fe complex in the ET.  相似文献   

15.
Beta-carotene (Car) and chlorophyll (Chl) function as secondary electron donors in photosystem II (PS II) under conditions, such as low temperature, when electron donation from the O(2)-evolving complex is inhibited. In prior studies of the formation and decay of Car(*+) and Chl(*+) species at low temperatures, cytochrome b(559) (Cyt b(559)) was chemically oxidized prior to freezing the sample. In this study, the photochemical formation of Car(*+) and Chl(*+) is characterized at low temperature in O(2)-evolving Synechocystis PS II treated with ascorbate to reduce most of the Cyt b(559). Not all of the Cyt b(559) is reduced by ascorbate; the remainder of the PS II reaction centers, containing oxidized low-potential Cyt b(559), give rise to Car(*+) and Chl(*+) species after illumination at low temperature that are characterized by near-IR spectroscopy. These data are compared to the measurements on ferricyanide-treated O(2)-evolving Synechocystis PS II in which the Car(*+) and Chl(*+) species are generated in PS II centers containing mostly high- and intermediate-potential Cyt b(559). Spectral differences observed in the ascorbate-reduced PS II samples include decreased intensity of the Chl(*+) and Car(*+) absorbance peaks, shifts in the Car(*+) absorbance maxima, and lack of formation of a 750 nm species that is assigned to a Car neutral radical. These results suggest that different spectral forms of Car are oxidized in PS II samples containing different redox forms of Cyt b(559), which implies that different secondary electron donors are favored depending on the redox form of Cytb(559) in PS II.  相似文献   

16.
Redox properties of cytochrome b559 (Cyt b559) and cytochrome c550 (Cyt c550) have been studied by using highly stable photosystem II (PSII) core complex preparations from a mutant strain of the thermophilic cyanobacterium Thermosynechococcus elongatus with a histidine tag on the CP43 protein of PSII. Two different redox potential forms for Cyt b559 are found in these preparations, with a midpoint redox potential ( E'(m)) of +390 mV in about half of the centers and +275 mV in the other half. The high-potential form, whose E'(m)is pH independent, can be converted into the lower potential form by Tris washing, mild heating or alkaline pH incubation. The E'(m) of the low-potential form is significantly higher than that found in other photosynthetic organisms and is not affected by pH. The possibility that the heme of Cyt b559 in T. elongatus is in a more hydrophobic environment is discussed. Cyt c550 has a higher E'(m)when bound to the PSII core (-80 mV at pH 6.0) than after its extraction from the complex (-240 mV at pH 6.0). The E'(m) of Cyt c550 bound to PSII is pH independent, while in the purified state an increase of about 58 mV/pH unit is observed when the pH decreases below pH 9.0. Thus, Cyt c550 seems to have a single protonateable group which influences the redox properties of the heme. From these electrochemical measurements and from EPR controls it is proposed that important changes in the solvent accessibility to the heme and in the acid-base properties of that protonateable group could occur upon the release of Cyt c550 from PSII.  相似文献   

17.
By recording leaf transmittance at 820 nm and quantifying the photon flux density of far red light (FRL) absorbed by long-wavelength chlorophylls of Photosystem I (PS I), the oxidation kinetics of electron carriers on the PS I donor side was mathematically analyzed in sunflower (Helianthus annuus L.), tobacco (Nicotiana tabacum L.) and birch (Betula pendula Roth.) leaves. PS I donor side carriers were first oxidized under FRL, electrons were then allowed to accumulate on the PS I donor side during dark intervals of increasing length. After each dark interval the electrons were removed (titrated) by FRL. The kinetics of the 820 nm signal during the oxidation of the PS I donor side was modeled assuming redox equilibrium among the PS I donor pigment (P700), plastocyanin (PC), and cytochrome f plus Rieske FeS (Cyt f + FeS) pools, considering that the 820 nm signal originates from P700+ and PC+. The analysis yielded the pool sizes of P700, PC and (Cyt f + FeS) and associated redox equilibrium constants. PS I density varied between 0.6 and 1.4 μmol m−2. PS II density (measured as O2 evolution from a saturating single-turnover flash) ranged from 0.64 to 2.14 μmol m−2. The average electron storage capacity was 1.96 (range 1.25 to 2.4) and 1.16 (range 0.6 to 1.7) for PC and (Cyt f + FeS), respectively, per P700. The best-fit electrochemical midpoint potential differences were 80 mV for the P700/PC and 25 mV for the PC/Cyt f equilibria at 22 °C. An algorithm relating the measured 820 nm signal to the redox states of individual PS I donor side electron carriers in leaves is presented. Applying this algorithm to the analysis of steady-state light response curves of net CO2 fixation rate and 820 nm signal shows that the quantum yield of PS I decreases by about half due to acceptor side reduction at limiting light intensities before the donor side becomes oxidized at saturating intensities. Footnote: This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Formation of thermoluminescence signals is characteristics of energy- and charge storage in Photosystem II. In isolated D1/D2/cytochrome b-559 Photosystem II reaction centre preparation four thermoluminescence components were found. These appear at -180 (Z band), between -80 and -50 (Zv band), at -30 and at +35°C. The Z band arises from pigment molecules but not correlated with photosynthetic activity. The Zv and -30°C bands arise from the recombination of charge pairs stabilized in the Photosystem II reaction centre complex. The +35°C band probably corresponds to the artefact glow peak resulting from a pigment-protein-detergent interaction in subchloroplast preparations (Rózsa Zs, Droppa M and Horváth G (1989) Biochim Biophys Acta 973, 350–353).Abbreviations Chl chlorophyll - Cyt cytochrome - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - D1 psbA gene product - D2 psbD gene product - P680 primary electron donor of PS II - Pheo pheophytin - PS II Photosystem II - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II - RC reaction centre of PS II - TL thermoluminescence  相似文献   

19.
A detailed analysis of the properties of cytochrome b(559) (Cyt b(559)) in photosystem II (PS II) preparations with different degrees of structural complexity is presented. It reveals that (i) D1-D2-Cyt b(559) complexes either in solubilized form or incorporated into liposomes contain only one type of Cyt b(559) with E(m) values of 60 +/- 5 and 100 +/- 10 mV, respectively, at pH 6.8; (ii) in oxygen-evolving solubilized PS II core complexes Cyt b(559) exists predominantly (>85%) as an LP form with an E(m,7) of 125 +/- 10 mV and a minor fraction with an E(m,7) of -150 +/- 15 mV; (iii) in oxygen-evolving PS II membrane fragments three different redox forms are discernible with E(m) values of 390 +/- 15 mV (HP form), 230 +/- 20 mV (IP form), and 105 +/- 25 mV (LP form) and relative amplitudes of 58, 24, and 18%, respectively, at pH 7.3; (iv) the E(m) values are almost pH-independent between pH 6 and 9.5 in all sample types except D1-D2-Cyt b(559) complexes incorporated into liposomes with a slope of -29 mV/pH unit, when the pH increases from 6 to 9.5 (IP and LP form in PS II membrane fragments possibly within a restricted range from pH 6.5 to 8); (v) at pH >8 the HP Cyt b(559) progressively converts to the IP form with increasing pH; (vi) the reduced-minus-oxidized optical difference spectra of Cyt b(559) are very similar in the lambda range of 360-700 nm for all types except for the HP form which exhibits pronounced differences in the Soret band; and (vii) PS II membrane fragments and core complexes are inferred to contain about two Cyt b(559) hemes per PS II. Possible implications of conformational changes near the heme group and spin state transitions of the iron are discussed.  相似文献   

20.
The effect of dehydration on the reaction pattern of photosystem II (PS II) has been studied by measuring and analyzing spectral changes induced by continuous wavelength illumination in films of untreated and hydroxylamine-washed PS II membrane fragments dehydrated to different levels. The obtained data revealed (i) the extent of light-induced formation of about one Q(A)(-*)per 230 chlorophylls (Chl) remains virtually invariant to dehydration down to the lowest values of relative humidity (6-8% RH); (ii) a decrease of the RH to 30% leads to severe blockage of the electron transfer from Q(A)(-*) to Q(B) and the progressive replacement of water oxidation by photooxidation of high potential (HP) cytochrome (Cyt) b559 in untreated PS II samples or accessory Chl and carotenoid (Car) molecules in samples with preoxidized Cyt b559; (iii) photooxidation of Cyt b559 is followed by its photoreduction, concomitant with photooxidation of Chl and Car; (iv) in dry samples with preoxidized Cyt b559, not more than a half of total Cyt b559 can be photochemically reduced, independent of the extent of Cyt b559 in the HP form; (v) at low RH values, Cyt b559 photoreduction in samples with preoxidized heme groups and photoaccumulation of Q(A)(-*) take place with biphasic kinetics with similar rate constants for both processes; (vi) Cyt b559 photoreduction in dry samples is DCMU insensitive, while the dark rereduction of photooxidized Cyt b559 is inhibited by DCMU; (vii) fast and slow kinetic phases of Cyt b559 photoreduction dramatically differ in their dependencies on the intensity of CW illumination and are associated with electron donation to Cyt b559 from Q(A)(-*) and pheophytin(-*), respectively. The pathways of light-induced electron transfer in PS II involving Cyt b559 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号