首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Oxidative redox titrations of the mitochondrial cytochromes were performed in near-anoxic RAW 264.7 cells by inhibiting complex I. Cytochrome oxidation changes were measured with multi-wavelength spectroscopy and the ambient redox potential was calculated from the oxidation state of endogenous cytochrome c. Two spectral components were separated in the α-band range of cytochrome oxidase and they were identified as the difference spectrum of heme a when it has a high (a(H)) or low (a(L)) midpoint potential (E(m)) by comparing their occupancy during redox titrations carried out when the membrane potential (ΔΨ) was dissipated with a protonophore to that predicted by the neoclassical model of redox cooperativity. The difference spectrum of a(L) has a maximum at 605nm whereas the spectrum of a(H) has a maximum at 602nm. The ΔΨ-dependent shift in the E(m) of a(H) was too great to be accounted for by electron transfer from cytochrome c to heme a against ΔΨ but was consistent with a model in which a(H) is formed after proton uptake against ΔΨ suggesting that the spectral changes are the result of protonation. A stochastic simulation was implemented to model oxidation states, proton uptake and E(m) changes during redox titrations. The redox anti-cooperativity between heme a and heme a(3), and proton binding, could be simulated with a model where the pump proton interacted with heme a and the substrate proton interacted with heme a(3) with anti-cooperativity between proton binding sites, but not with a single proton binding site coupled to both hemes.  相似文献   

2.
This paper presents a new experimental approach for determining the individual optical characteristics of reduced heme a in bovine heart cytochrome c oxidase starting from a small selective shift of the heme a absorption spectrum induced by calcium ions. The difference spectrum induced by Ca2+ corresponds actually to a first derivative (differential) of the heme a 2+ absolute absorption spectrum. Such an absolute spectrum was obtained for the mixed-valence cyanide complex of cytochrome oxidase (a 2+ a 3 3+ -CN) and was subsequently used as a basis spectrum for further procession and modeling. The individual absorption spectrum of the reduced heme a in the Soret region was reconstructed as the integral of the difference spectrum induced by addition of Ca2+. The spectrum of heme a 2+ in the Soret region obtained in this way is characterized by a peak with a maximum at 447 nm and half-width of 17 nm and can be decomposed into two Gaussians with maxima at 442 and 451 nm and half-widths of ~10 nm (589 cm?1) corresponding to the perpendicularly oriented electronic π→π* transitions B 0x and B 0y in the porphyrin ring. The reconstructed spectrum in the Soret band differs significantly from the “classical” absorption spectrum of heme a 2+ originally described by Vanneste (Vanneste, W. H. (1966) Biochemistry, 65, 838–848). The differences indicate that the overall γ-band of heme a 2+ in cytochrome oxidase contains in addition to the B 0x and B 0y transitions extra components that are not sensitive to calcium ions, or, alternatively, that the Vanneste’s spectrum of heme a 2+ contains significant contribution from heme a 3 2+ . The reconstructed absorption band of heme a 2+ in the α-band with maximum at 605 nm and half-width of 18 nm (850 cm?1) corresponds most likely to the individual Q 0y transition of heme a, whereas the Q 0x transition contributes only weakly to the spectrum.  相似文献   

3.
1. Potentiometric circular dichroism titrations of cytochrome c oxidase, carried out in the absence of cytochrome c, confirm the potentiometric equivalence of the two heme a groups of cytochrome c oxidase. In the presence of cytochrome c, two different midpoint potentials are found for the two heme a groups of cytochrome c oxidase.2. Circular dichroism difference spectra (reduced minus oxidized) of the two heme a components of cytochrome c oxidase have been obtained by means of this potentiometric titration. On reduction of the first heme a group a circular dichroism difference spectrum is obtained with peaks at 425, 442 and 602.5 nm; the second heme a group shows difference peaks at 434, 447 and 608 nm. Whereas both heme a groups contribute about equally to the absorbance difference spectrum, the second heme a group reduced contributes about twice as much to the circular dichroism difference spectrum as does the first heme a group.3. From these spectral and circular dichroism differences it is concluded that, on reduction of or ligand binding to cytochrome c oxidase, conformational changes occur which affect the symmetry of the environments of the heme a groups.  相似文献   

4.
The EPR signals of oxidized and partially reduced cytochrome oxidase have been studied at pH 6.4, 7.4, and 8.4. Isolated cytochrome oxidase in both non-ionic detergent solution and in phospholipid vesicles has been used in reductive titrations with ferrocytochrome c.The g values of the low- and high-field parts of the low-spin heme signal in oxidized cytochrome oxidase are shown to be pH dependent. In reductive titrations, low-spin heme signals at g 2.6 as well as rhombic and nearly axial high-spin heme signals are found at pH 8.4, while the only heme signals appearing at pH 6.4 are two nearly axial g 6 signals. This pH dependence is shifted in the vesicles.The g 2.6 signals formed in titrations with ferrocytochrome c at pH 8.4 correspond maximally to 0.25–0.35 heme per functional unit (aa3) of cytochrome oxidase in detergent solution and to 0.22 heme in vesicle oxidase. The total amount of high-spin heme signals at g 6 found in partially reduced enzyme is 0.45–0.6 at pH 6.4 and 0.1–0.2 at pH 8.4. In titrations of cytochrome oxidase in detergent solution the g 1.45 and g 2 signals disappear with fewer equivalents of ferrocytochrome c added at pH 8.4 compared to pH 6.4.The results indicate that the environment of the hemes varies with the pH. One change is interpreted as cytochrome a3 being converted from a high-spin to a low-spin form when the pH is increased. Possibly this transition is related to a change of a liganded H2O to OH? with a concomitant decrease of the redox potential. Oxidase in phosphatidylcholine vesicles is found to behave as if it experiences a pH, one unit lower than that of the medium.  相似文献   

5.
The structural and functional properties of active site mutants of cytochrome c oxidase from Paracoccus denitrificans (PdCcO) were investigated with resonance Raman spectroscopy. Based on the Fe-CO stretching modes and low frequency heme modes, two conformers (α- and β-forms) were identified that are in equilibrium in the enzyme. The α-conformer, which is the dominant species in the wild-type enzyme, has a shorter heme a3 iron-CuB distance and a more distorted heme, as compared to the β-conformer, which has a more relaxed and open distal pocket. In general, the mutations caused a decrease in the population of the α-conformer, which is concomitant with a decreased in the catalytic activity, indicating that the α-conformer is the active form of the enzyme. The data suggest that the native structure of the enzyme is in a delicate balance of intramolecular interactions. We present a model in which the mutations destabilize the α-conformer, with respect to the β-conformer, and raise the activation barrier for the inter-conversion between the two conformers. The accessibility of the two conformers in the conformational space of CcO plausibly plays a critical role in coupling the redox reaction to proton translocation during the catalytic cycle of the enzyme.  相似文献   

6.
7.
“Reduced minus oxidized” difference extinction coefficients Δ? in the α-bands of Cyt b559 and Cyt c550 were determined by using functionally and structurally well-characterized PS II core complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus. Values of 25.1 ± 1.0 mM−1 cm−1 and 27.0 ± 1.0 mM−1 cm−1 were obtained for Cyt b559 and Cyt c550, respectively. Anaerobic redox titrations covering the wide range from −250 up to +450 mV revealed that the heme groups of both Cyt b559 and Cyt c550 exhibit homogenous redox properties in the sample preparation used, with Em values at pH 6.5 of 244 ± 11 mV and −94 ± 21 mV, respectively. No HP form of Cyt b559 could be detected. Experiments performed on PS II membrane fragments of higher plants where the content of the high potential form of Cyt b559 was varied by special treatments (pH, heat) have shown that the α-band extinction of Cyt b559 does not depend on the redox form of the heme group. Based on the results of this study the Cyt b559/PSII stoichiometry is inferred to be 1:1 not only in thermophilic cyanobacteria as known from the crystal structure but also in PSII of plants. Possible interrelationships between the structure of the QB site and the microenvironment of the heme group of Cyt b559 are discussed.  相似文献   

8.
Mixtures of cytochrome c oxidase and cytochrome c have been titrated by coulometrically generated reductant, methyl viologen radical cation, and physiological oxidant, O2. Charge distribution among the heme components in mixtures of these two redox enzymes has been evaluated by monitoring the absorbance changes at 605 and 550 nm. Differences in the pathway of the electron transfer process during a reduction cycle as compared to an oxidation cycle are indicated by variations found in the absorbance behavior of the heme components during successive reductive and oxidative titrations. It is apparent that the potential of the cytochrome a heme is dependent upon whether oxidation or reduction is occurring.  相似文献   

9.
In this paper allosteric interactions in protonmotive heme aa3 terminal oxidases of the respiratory chain are dealt with. The different lines of evidence supporting the key role of H+/e? coupling (redox Bohr effect) at the low spin heme a in the proton pump of the bovine oxidase are summarized. Results are presented showing that the I-R54M mutation in P. denitrificans aa3 oxidase, which decreases by more than 200 mV the Em of heme a, inhibits proton pumping. Mutational aminoacid replacement in proton channels, at the negative (N) side of membrane-inserted prokaryotic aa3 oxidases, as well as Zn2 + binding at this site in the bovine oxidase, uncouples proton pumping. This effect appears to result from alteration of the structural/functional device, closer to the positive, opposite (P) surface, which separates pumped protons from those consumed in the reduction of O2 to 2 H2O. This article is part of a Special Issue entitled: Respiratory Oxidases.  相似文献   

10.
Günter A. Peschek 《BBA》1981,635(3):470-475
The cytochrome content of membrane fragments prepared from the bluegreen alga (cyanobacterium) Anacystis nidulans was examined by difference spectrophotometry. Two b-type cytochromes and a hitherto unknown cytochrome a could be characterized. In the reduced-minus-oxidised difference spectra the a-type cytochrome showed an α-band at 605 nm and a γ-band at 445 nm. These bands shifted to 590 and 430 nm, respectively, in CO difference spectra. NADPH, NADH and ascorbate reduced the cytochrome through added horse heart cytochrome c as electron mediator. In presence of KCN the reduced-minus-oxidised spectrum showed a peak at 600 nm and a trough at 604 nm. Photoaction spectra of O2 uptake and of horse heart cytochrome c oxidation by CO-inhibited membranes showed peaks at 590 and 430 nm. These findings are consistent with cytochrome aa3 being the predominant respiratory cytochrome c oxidase in Anacystis nidulans.  相似文献   

11.
The electron paramagnetic resonance (epr) properties of cytochrome c oxidase have been examined with special attention to the effect of added ligands and of interactions between the redox components. The fully oxidized preparations have a very small g6 signal which increases greatly as the redox potential is made more negative, a process exactly paralleling the disappearance of the g3 signal. The potential for half appearance or disappearance (Em), respectively, is 380 mV at pH 7.0 and 300 mV at pH 8.5. This identifies the changes as accompanying reduction of cytochrome a3 because the Em of the “invisible copper” is 340 mV and pH independent. Nitric oxide (NO) binds reduced cytochrome a3 to form a paramagnetic species. This resulting epr signal is strongly dependent on the redox state of cytochrome a, another expression of heme-heme interaction in cytochrome oxidase. The NO compound is also unique in that under the appropriate conditions three of the four redox components (cytochrome a3, cytochrome a, and the “visible” copper) are epr active. In potentiometric titrations in the presence of azide the formation of the azide compound responsible for the g2.9 signal appears to require reduction of both cytochrome a3 and the “invisible copper.” An internal sulfur compound is present which, at alkaline pH values, can bind the heme responsible for the g6 signal and change it to a low-spin sulfur compound with a signal at approximately g2.6. Evidence is also presented for the cytochrome c oxidase in situ being an equilibrium mixture of two different conformational states.  相似文献   

12.
Tateo Yamanaka  Keiko Fujii 《BBA》1980,591(1):53-62
Cytochrome a-type terminal oxidase was purified from Thiobacillus novellus to an electrophoretically homogeneous state and some of its properties were studied.The enzyme shows absorption peaks at 428 and 602 nm in the oxidized form, and at 442 and 602 nm in the reduced form. The CO compound of the reduced enzyme shows peaks at 431 and 599 nm. The enzyme has 1 mol of haem a and 1 g-atom of copper per 55 600 g and is composed of two kinds of subunit, of 32 000 and 23 000 daltons, respectively.The enzyme reacts rapidly with tuna, bonito and yeast cytochromes c as well as with T. novellus cytochrome c, while it reacts slowly with horse and cow cytochromes c. The reduction product of oxygen catalysed by the enzyme is water.  相似文献   

13.
Jiancong Xu 《BBA》2008,1777(2):196-201
The membrane-bound enzyme cytochrome c oxidase, the terminal member in the respiratory chain, converts oxygen into water and generates an electrochemical gradient by coupling the electron transfer to proton pumping across the membrane. Here we have investigated the dynamics of an excess proton and the surrounding protein environment near the active sites. The multi-state empirical valence bond (MS-EVB) molecular dynamics method was used to simulate the explicit dynamics of proton transfer through the critically important hydrophobic channel between Glu242 (bovine notation) and the D-propionate of heme a3 (PRDa3) for the first time. The results from these molecular dynamics simulations indicate that the PRDa3 can indeed re-orientate and dissociate from Arg438, despite the high stability of such an ion pair, and has the ability to accept protons via bound water molecules. Any large conformational change of the adjacent heme a D-propionate group is, however, sterically blocked directly by the protein. Free energy calculations of the PRDa3 side chain isomerization and the proton translocation between Glu242 and the PRDa3 site have also been performed. The results exhibit a redox state-dependent dynamical behavior and indicate that reduction of the low-spin heme a may initiate internal transfer of the pumped proton from Glu242 to the PRDa3 site.  相似文献   

14.
Cytochrome bd is a terminal component of the respiratory chain of Escherichia coli catalyzing reduction of molecular oxygen to water. It contains three hemes, b558, b595, and d. The detailed spectroelectrochemical redox titration and numerical modeling of the data reveal significant redox interaction between the low-spin heme b558 and high-spin heme b595, whereas the interaction between heme d and either hemes b appears to be rather weak. However, the presence of heme d itself decreases much larger interaction between the two hemes b. Fitting the titration data with a model where redox interaction between the hemes is explicitly included makes it possible to extract individual absorption spectra of all hemes. The α- and β-band reduced-minus-oxidized difference spectra agree with the data published earlier ([22] J.G. Koland, M.J. Miller, R.B. Gennis, Potentiometric analysis of the purified cytochrome d terminal oxidase complex from Escherichia coli, Biochemistry 23 (1984) 1051-1056., and [23] R.M. Lorence, J.G. Koland, R.B. Gennis, Coulometric and spectroscopic analysis of the purified cytochrome d complex of Escherichia coli: evidence for the identification of “cytochrome a1” as cytochrome b595, Biochemistry 25 (1986) 2314-2321.). The Soret band spectra show λmax = 429.5 nm, λmin ≈ 413 nm (heme b558), λmax = 439 nm, λmin ≈ 400 ± 1 nm (heme b595), and λmax = 430 nm, λmin = 405 nm (heme d). The spectral contribution of heme d to the complex Soret band is much smaller than those of either hemes b; the Soret/α (ΔA430A629) ratio for heme d is 1.6.  相似文献   

15.
《BBA》2020,1861(9):148237
Cytochrome a was suggested as the key redox center in the proton pumping process of bovine cytochrome c oxidase (CcO). Recent studies showed that both the structure of heme a and its immediate vicinity are sensitive to the ligation and the redox state of the distant catalytic center composed of iron of cytochrome a3 (Fea3) and copper (CuB). Here, the influence of the ligation at the oxidized Fea33+–CuB2+ center on the electron–proton coupling at heme a was examined in the wide pH range (6.5-11). The strength of the coupling was evaluated by the determination of pH dependence of the midpoint potential of heme a (Em(a)) for the cyanide (the low-spin Fea33+) and the formate-ligated CcO (the high-spin Fea33+). The measurements were performed under experimental conditions when other three redox centers of CcO are oxidized. Two slightly differing linear pH dependencies of Em(a) were found for the CN– and the formate–ligated CcO with slopes of −13 mV/pH unit and −23 mV/pH unit, respectively. These linear dependencies indicate only a weak and unspecific electron–proton coupling at cytochrome a in both forms of CcO. The lack of the strong electron–proton coupling at the physiological pH values is also substantiated by the UV–Vis absorption and electron–paramagnetic resonance spectroscopy investigations of the cyanide–ligated oxidized CcO. It is shown that the ligand exchange at Fea3+ between His–Fea3+–His and His–Fea3+–OH occurs only at pH above 9.5 with the estimated pK >11.0.  相似文献   

16.
《BBA》2006,1757(9-10):1133-1143
In cytochrome c oxidase, oxido-reductions of heme a/CuA and heme a3/CuB are cooperatively linked to proton transfer at acid/base groups in the enzyme. H+/e cooperative linkage at Fea3/CuB is envisaged to be involved in proton pump mechanisms confined to the binuclear center. Models have also been proposed which involve a role in proton pumping of cooperative H+/e linkage at heme a (and CuA). Observations will be presented on: (i) proton consumption in the reduction of molecular oxygen to H2O in soluble bovine heart cytochrome c oxidase; (ii) proton release/uptake associated with anaerobic oxidation/reduction of heme a/CuA and heme a3/CuB in the soluble oxidase; (iii) H+ release in the external phase (i.e. H+ pumping) associated with the oxidative (R  O transition), reductive (O  R transition) and a full catalytic cycle (R  O  R transition) of membrane-reconstituted cytochrome c oxidase. A model is presented in which cooperative H+/e linkage at heme a/CuA and heme a3/CuB with acid/base clusters, C1 and C2 respectively, and protonmotive steps of the reduction of O2 to water are involved in proton pumping.  相似文献   

17.
The powerful technique of energy diagrams has been used to analyze the mechanism for proton pumping in cytochrome c oxidase. Energy levels and barriers are derived starting out from recent kinetic experiments for the O to E transition, and are then refined using general criteria and a few additional experimental facts. Both allowed and non-allowed pathways are obtained in this way. A useful requirement is that the forward and backward rate should approach each other for the full membrane gradient. A key finding is that an electron on heme a (or the binuclear center) must have a significant lowering effect on the barrier for proton uptake, in order to prevent backflow from the pump-site to the N-side. While there is no structural gating in the present mechanism, there is thus an electronic gating provided by the electron on heme a. A quantitative analysis of the energy levels in the diagrams, leads to Prop-A of heme a3 as the most likely position for the pump-site, and the Glu278 region as the place for the transition state for proton uptake. Variations of key redox potentials and pKa values during the pumping process are derived for comparison to experiments.  相似文献   

18.
New small cytochrome c (TniCYT) was purified from haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio nitratireducens. The protein was analyzed by mass spectrometry as well as using visible, CD and EPR spectroscopy. It was found that TniCYT is a monomer with a molecular mass of 9461 Da which contains two hemes per molecule. The data of CD and EPR spectroscopy showed that two hemes possess different optical activity and are in distinct, high and low spin states. TniCYT was also demonstrated to have unusual characteristics in the visible spectrum, namely, the splitting of characteristic peaks was observed in α- and β-bands of the heme spectrum when the reduced form of cytochrome was analyzed. The α-band has two peaks with maximum at 548 and 556 nm whereas the β-band showes ones at 520 and 528 nm. According to the MALDI finger-print analysis, the new cytochrome has a unique amino acid sequence.  相似文献   

19.
Tatsuhiko Yagi 《BBA》1979,548(1):96-105
Cytochrome c-553 of Desulfovibrio vulgaris, Miyazaki, was purified to homogeneity. The absorption spectrum of the ferro form has four peaks at 553, 525, 417 and 317 nm with a plateau near 280 nm, and that of the ferri form has three peaks at 525, 410 and 360 nm with a plateau near 280 nm and a shoulder at 560 nm. The millimolar absorbance coefficient of the α-peak of the ferro form is 23.9. The molecular weight of cytochrome c-553 is 8000, and it contains one heme. Its isoelectric point is rather alkaline, and its standard redox potential is ?0.26 V at pH 7.0. Its amino acid composition is unique; it lacks proline, isoleucine and tryptophan.Ferrocytochrome c-553 does not combine with CO, nor does it transfer electrons directly to various redox carriers such as flavin nucleotides, methylene blue, indigodisulfonate, 5-methylphenazinium methyl sulfate, 1-methoxy-5-methylphenazinium methyl sulfate, viologens and cytochrome c3, but is oxidized by ferricyanide or by O2.Cytochrome c-553 can be reduced by formate dehydrogenase of this bacterium in the presence of formate, but not by hydrogenase under H2. The formate dehydrogenase does not reduce cytochrome c3 in the presence of formate. The systematic name for formate dehydrogenase of D. vulgaris is, therefore, established as formate:ferricytochrome c-553 oxidoreductase in EC subclass 1.2.2.—.  相似文献   

20.
Peter Nicholls 《BBA》1975,396(1):24-35
1. Sulphide, like cyanide, is a slow-binding inhibitor of cytochromeaa3 with a high affinity (Kd < 0.1 μM).2. Unlike cyanide binding, the binding of sulphide is apparently independent of the redox state of components of the oxidase other than cytochromea3and shows no anomalous kinetics during complex formation.3. Sulphide binding to cytochrome a33+ is accompanied by a blue-shift in the α-peak of the reduced enzyme (a2+ a33+H2S), similar to but smaller than that induced by azide.4. The reduced sulphide-inhibited system shows a much higher Soret peak at 445 nm than the corresponding cyanide and azide complexes, suggesting that partial electron transfer from sulphide to haem may occur in the complex. No evidence was obtained for the formation of any sulfhaem derivatives of cytochromea3.5. The influence of energization on the spectrum of mitochondrial cytochrome oxidase, and the effects of calcium on the α-peak of isolated cytochromeaa3 (Wikstro¨m, M. K. F. (1974) Ann. N. Y. Acad. Sci. 227, 146–158) are distinct from the action of the cytochromea3ligands.6. A classification of peak shifts in the α-region in terms of isosteric and allosteric ligands is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号