共查询到20条相似文献,搜索用时 0 毫秒
1.
Md. Wahadoszamen Artur Ghazaryan Hande E. Cingil Anjue Mane Ara Claudia Büchel Rienk van Grondelle Rudi Berera 《BBA》2014
Diatoms are characterized by very efficient photoprotective mechanisms where the excess energy is dissipated as heat in the main antenna system constituted by fucoxanthin–chlorophyll (Chl) protein complexes (FCPs). We performed Stark fluorescence spectroscopy on FCPs in their light-harvesting and energy dissipating states. Our results show that two distinct emitting bands are created upon induction of energy dissipation in FCPa and possibly in FCPb. More specifically one band is characterized by broad red shifted emission above 700 nm and bears strong similarity with a red shifted band that we detected in the dissipative state of the major light-harvesting complex II (LHCII) of plants [26]. We discuss the results in the light of different mechanisms proposed to be responsible for photosynthetic photoprotection. 相似文献
2.
The ultrafast caroteonid to chlorophyll a energy transfer dynamics of the isolated fucoxanthin-chlorophyll proteins FCPa and FCPb from the diatom Cyclotella meneghiniana was investigated in a comprehensive study using transient absorption in the visible and near infrared spectral region as well as static fluorescence spectroscopy. The altered oligomerization state of both antenna systems results in a more efficient energy transfer for FCPa, which is also reflected in the different chlorophyll a fluorescence quantum yields. We therefore assume an increased quenching in the higher oligomers of FCPb. The influence of the carotenoid composition was investigated using FCPa and FCPb samples grown under different light conditions and excitation wavelengths at the blue (500 nm) and red (550 nm) wings of the carotenoid absorption. The different light conditions yield in altered amounts of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin. Since no significant dynamic changes are observed for high light and low light samples, the contribution of the xanthophyll cycle pigments to the energy transfer is most likely negligible. On the contrary, the observed dynamics change drastically for the different excitation wavelengths. The analyses of the decay associated spectra of FCPb suggest an altered energy transfer pathway. For FCPa even an additional time constant was found after excitation at 500 nm. It is assigned to the intrinsic lifetime of either the xanthophyll cycle carotenoids or more probable the blue absorbing fucoxanthins. Based on our studies we propose a detailed model explaining the different excitation energy transfer pathways in FCPa. 相似文献
3.
Nonphotochemical quenching (NPQ) is a fundamental mechanism in photosynthesis by which plants protect themselves against excess excitation energy and which is thus of crucial importance for plant survival and fitness. Recently, carotenoid radical cation (Car•+) formation has been discovered to be a key step in the feedback deexcitation quenching component (qE) of NPQ, whose molecular mechanism and location remains elusive. A recent model for qE suggests that the replacement of violaxanthin (Vio) by zeaxanthin (Zea) in photosynthetic pigment binding pockets can in principle result in qE via the so-called “gear-shift” or electron transfer quenching mechanisms. We performed pump-probe measurements on individual antenna complexes of photosystem II (CP24, CP26 and CP29) upon excitation of the chlorophylls (Chl) into their first excited Qy state at 660 nm when either Vio or Zea was bound to those complexes. The Chl lifetime was then probed by measuring the decay kinetics of the Chl excited state absorption (ESA) at 900 nm. The charge-transfer quenching mechanism, which is characterized by a spectral signature of the transiently formed Zea radical cation (Zea•+) in the near-IR, has also been addressed, both in solution and in light-harvesting complexes of photosystem II (LHC-II). Applying resonant two-photon two-color ionization (R2P2CI) spectroscopy we show here the formation of β-Car•+ in solution, which occurs on a femtosecond time-scale by direct electron transfer to the solvent. The β-Car•+ maxima strongly depend on the solvent polarity. Moreover, our two-color two-photon spectroscopy on CP29 reveals the spectral position of Zea•+ in the near-IR region at 980 nm. 相似文献
4.
The main light-harvesting pigment-protein complex of cyanobacteria and certain algae is the phycobilisome, which harvests sunlight and regulates the flow of absorbed energy to provide the photochemical reaction centres with a constant energy throughput. At least two light-driven mechanisms of excited energy quenching in phycobilisomes have been identified: the dominant mechanism in many strains of cyanobacteria depends on the orange carotenoid protein (OCP), while the second mechanism is intrinsically available to a phycobilisome and is possibly activated faster than the former. Recent single molecule spectroscopy studies have shown that far-red (FR) emission states are related to the OCP-dependent mechanism and it was proposed that the second mechanism may involve similar states. In this study, we examined the dynamics of simultaneously measured emission spectra and intensities from a large set of individual phycobilisome complexes from Synechocystis PCC 6803. Our results suggest a direct relationship between FR spectral states and thermal energy dissipating states and can be explained by a single phycobilin pigment in the phycobilisome core acting as the site of both quenching and FR emission likely due to the presence of a charge-transfer state. Our experimental method provides a means to accurately resolve the fluorescence lifetimes and spectra of the FR states, which enabled us to quantify a kinetic model that reproduces most of the experimentally determined properties of the FR states. 相似文献
5.
6.
Summary Diatoms and related algae, in contrast to higher plants, have a xanthophyll-dominated light harvesting complex and an endoplasmic reticulum (ER) network surrounding the plastid. We have previously demonstrated that polypeptide constituents of the light harvesting complex from the diatom Phaeodactylum tricornutum are nuclear encoded and synthesized as higher molecular weight precursors in the cytoplasm. The amino-termini of the precursor proteins, as deduced from their gene sequences, have features of a signal peptide. Here, we show that the precursor polypeptides can be cotranslationally imported and processed by an in vitro microsomal membrane system, suggesting that cytoplasmically synthesized proteins require a signal peptide to traverse an ER before entering the plastid. These results are discussed in the context of plastid evolution. 相似文献
7.
Carotenoids in light harvesting complex (LHC) play an important role in preventing plants photodamage caused by excess light. Non-photochemical quenching (NPQ) is an important mechanism adopted by plants to deal with high light intensity and the major component is referred to as energy dependent quenching (qE). Despite numerous studies have been devoted to investigating the site and mechanism of qE, there are still much debate on these topics. In this article, we discussed the possible site and underlying mechanism of qE based on the structural similarity of carotenoids. Moreover, being as good antioxidants, carotenoids’ potential protective effects against LHC photo-oxidation by quenching active oxygen species or triplet excited state chlorophyll are also discussed. 相似文献
8.
Robert G. West David Bína Marcel Fuciman Valentyna Kuznetsova Radek Litvín Tomáš Polívka 《BBA》2018,1859(5):357-365
We have applied femtosecond transient absorption spectroscopy in pump-probe and pump-dump-probe regimes to study energy transfer between fucoxanthin and Chl a in fucoxanthin-Chl a complex from the pennate diatom Phaeodactylum tricornutum. Experiments were carried out at room temperature and 77?K to reveal temperature dependence of energy transfer. At both temperatures, the ultrafast (<100?fs) energy transfer channel from the fucoxanthin S2 state is active and is complemented by the second pathway via the combined S1/ICT state. The S1/ICT-Chl a pathway has two channels, the fast one characterized by sub-picosecond energy transfer, and slow having time constants of 4.5?ps at room temperature and 6.6?ps at 77?K. The overall energy transfer via the S1/ICT is faster at 77?K, because the fast component gains amplitude upon lowering the temperature. The pump-dump-probe regime, with the dump pulse centered in the spectral region of ICT stimulated emission at 950?nm and applied at 2?ps after excitation, proved that the S1 and ICT states of fucoxanthin in FCP are individual, yet coupled entities. Analysis of the pump-dump-probe data suggested that the main energy donor in the slow S1/ICT-Chl a route is the S1 part of the S1/ICT potential surface. 相似文献
9.
Haripal PK Raval HK Raval MK Rawal RM Biswal B Biswal UC 《Journal of molecular modeling》2006,12(6):847-853
A three-dimensional model of the PsbS protein was built with the help of homology-modeling methods. This protein is also known as CP22 and is associated with the protection of photosystem II of thylakoid from excess quanta of light energy absorbed by the photosynthetic apparatus. PsbS is reported to bind two molecules of zeaxanthin at low pH (<5.0) and is believed to be essential for rapid nonphotochemical quenching (qE) of chlorophyll a fluorescence in photosystem II. An attempt was made to explain the pH modulation of the conformation of protein through salt-bridges Glu−(122)-Lys+(113) and Glu−(226)-Lys+(217). Binding of two molecules of zeaxanthin in the three-dimensional model of PsbS is postulated. The molecular mechanism of photoprotection by PsbS is explained through the model.
1 Backbone structure of the PsbS protein with two molecules of all trans zeaxanthin (ZEX). Residues Glu 90, 122, 194, 226 and Lys 113, 217 are shown. The figure is drawn with RASMOL (Molecular Visualization Program, RasMol V2.6, Roger Sayle, Glaxo Wellcome Research and Development, Stevenage, Hertfordshire, UK)
Electronic Supplementary Material Supplementary material is available for this article at 相似文献
10.
Irina V. Elanskaya Dmitry V. Zlenko Evgeny P. Lukashev Natalia E. Suzina Irena A. Kononova Igor N. Stadnichuk 《BBA》2018,1859(4):280-291
Phycobilisome (PBS) is a giant photosynthetic antenna associated with the thylakoid membranes of cyanobacteria and red algae. PBS consists of two domains: central core and peripheral rods assembled of disc-shaped phycobiliprotein aggregates and linker polypeptides. The study of the PBS architecture is hindered due to the lack of the data on the structure of the large ApcE-linker also called LCM. ApcE participates in the PBS core stabilization, PBS anchoring to the photosynthetic membrane, transfer of the light energy to chlorophyll, and, very probably, the interaction with the orange carotenoid protein (OCP) during the non-photochemical PBS quenching. We have constructed the cyanobacterium Synechocystis sp. PCC 6803 mutant lacking 235 N-terminal amino acids of the chromophorylated PBLCM domain of ApcE. The altered fluorescence characteristics of the mutant PBSs indicate that the energy transfer to the terminal emitters within the mutant PBS is largely disturbed. The PBSs of the mutant become unable to attach to the thylakoid membrane, which correlates with the identified absence of the energy transfer from the PBSs to the photosystem II. At the same time, the energy transfer from the PBS to the photosystem I was registered in the mutant cells and seems to occur due to the small cylindrical CpcG2-PBSs formation in addition to the conventional PBSs. In contrast to the wild type Synechocystis, the OCP-mediated non-photochemical PBS quenching was not registered in the mutant cells. Thus, the PBLCM domain takes part in formation of the OCP binding site in the PBS. 相似文献
11.
Low-temperature (77 K) steady-state fluorescence emission spectroscopy and dynamic light scattering were applied to the main
chlorophyll a/b protein light harvesting complex of photosystem II (LHC II) in different aggregation states to elucidate the mechanism of
fluorescence quenching within LHC II oligomers. Evidences presented that LHC II oligomers are heterogeneous and consist of
large and small particles with different fluorescence yield. At intermediate detergent concentrations the mean size of the
small particles is similar to that of trimers, while the size of large particles is comparable to that of aggregated trimers
without added detergent. It is suggested that in small particles and trimers the emitter is monomeric chlorophyll, whereas
in large aggregates there is also another emitter, which is a poorly fluorescing chlorophyll associate. A model, describing
populations of antenna chlorophyll molecules in small and large aggregates in their ground and first singlet excited states,
is considered. The model enables us to obtain the ratio of the singlet excited-state lifetimes in small and large particles,
the relative amount of chlorophyll molecules in large particles, and the amount of quenchers as a function of the degree of
aggregation. These dependencies reveal that the quenching of the chl a fluorescence upon aggregation is due to the formation of large aggregates and the increasing of the amount of chlorophyll
molecules forming these aggregates. As a consequence, the amount of quenchers, located in large aggregates, is increased,
and their singlet excited-state lifetimes steeply decrease. 相似文献
12.
Charusheela Ramanan Rudi Berera Kathi Gundermann Ivo van Stokkum Claudia Büchel Rienk van Grondelle 《BBA》2014
Photosynthetic organisms have developed vital strategies which allow them to switch from a light-harvesting to an energy dissipative state at the level of the antenna system in order to survive the detrimental effects of excess light illumination. These mechanisms are particularly relevant in diatoms, which grow in highly fluctuating light environments and thus require fast and strong response to changing light conditions. We performed transient absorption spectroscopy on FCPa, the main light-harvesting antenna from the diatom Cyclotella meneghiniana, in the unquenched and quenched state. Our results show that in quenched FCPa two quenching channels are active and are characterized by differing rate constants and distinct spectroscopic signatures. One channel is associated with a faster quenching rate (16 ns− 1) and virtually no difference in spectral shape compared to the bulk unquenched chlorophylls, while a second channel is associated with a slower quenching rate (2.7 ns− 1) and exhibits an increased population of red-emitting states. We discuss the origin of the two processes in the context of the models proposed for the regulation of photosynthetic light-harvesting. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy. 相似文献
13.
Control of the light harvesting function of chloroplast membranes: the LHCII-aggregation model for non-photochemical quenching 总被引:1,自引:0,他引:1
Dissipation of excess excitation energy within the photosystem II light-harvesting antenna (LHCII) by non-photochemical quenching (NPQ) is an important photoprotective process in plants. An update to a hypothesis for the mechanism of NPQ [FEBS Letters 292, 1991] is presented. The impact of recent advances in understanding the structure, organisation and photophysics of LHCII is assessed. We show possible locations of the predicted regulatory and quenching pigment-binding sites in the structural model of the major LHCII. We suggest that NPQ is a highly regulated concerted response of the organised thylakoid macrostructure, which can include different mechanisms and sites at different times. 相似文献
14.
Recently, a mechanism for the energy-dependent component (qE) of non-photochemical quenching (NPQ), the fundamental photo-protection mechanism in green plants, has been suggested. Replacement of violaxanthin by zeaxanthin in the binding pocket of the major light harvesting complex LHC-II may be sufficient to invoke efficient chlorophyll fluorescence quenching. Our quantum chemical calculations, however, show that the excited state energies of violaxanthin and zeaxanthin are practically identical when their geometry is constrained to the naturally observed structure of violaxanthin in LHC-II. Therefore, since violaxanthin does not quench LHC-II, zeaxanthin should not either. This theoretical finding is nicely in agreement with experimental results obtained by femtosecond spectroscopy on LHC-II complexes containing violaxanthin or zeaxanthin. 相似文献
15.
Michael Wormit 《BBA》2009,1787(6):738-9506
Light harvesting complexes have been identified in all chlorophyll-based photosynthetic organisms. Their major function is the absorption of light and its transport to the reaction centers, however, they are also involved in excess energy quenching, the so-called non-photochemical quenching (NPQ). In particular, electron transfer and the resulting formation of carotenoid radical cations have recently been discovered to play an important role during NPQ in green plants. Here, the results of our theoretical investigations of carotenoid radical cation formation in the major light harvesting complex LHC-II of green plants are reported. The carotenoids violaxanthin, zeaxanthin and lutein are considered as potential quenchers. In agreement with experimental results, it is shown that zeaxanthin cannot quench isolated LHC-II complexes. Furthermore, subtle structural differences in the two lutein binding pockets lead to substantial differences in the excited state properties of the two luteins. In addition, the formation mechanism of carotenoid radical cations in light harvesting complexes LH2 and LH1 of purple bacteria is studied. Here, the energetic position of the S1 state of the involved carotenoids neurosporene, spheroidene, spheroidenone and spirilloxanthin seems to determine the occurrence of radical cations in these LHCs upon photo-excitation. An elaborate pump-deplete-probe experiment is suggested to challenge the proposed mechanism. 相似文献
16.
Simona la Gatta Francesco Milano Gianluca M. Farinola Angela Agostiano Mariangela Di Donato Andrea Lapini Paolo Foggi Massimo Trotta Roberta Ragni 《BBA》2019,1860(4):350-359
The photosynthetic Reaction Center (RC) from the purple bacterium Rhodobacter sphaeroides has unique photoconversion capabilities, that can be exploited in assembly biohybrid devices for applications in solar energy conversion. Extending the absorption cross section of isolated RC through covalent functionalization with ad-hoc synthesized artificial antennas is a successful strategy to outperform the efficiency of the pristine photoenzyme under visible light excitation. Here we report a new heptamethine cyanine antenna that, upon covalent binding to RC, forms a biohybrid (hCyN7-RC) which, under white light excitation, has doubled photoconversion efficiency versus the bare photoenzyme. The artificial antenna hCyN7 successfully meets appropriate optical properties, i.e. peak position of absorption and emission maximum in the visible and NIR region respectively, large Stokes shift, and high fluorescence quantum yield, required for improving the efficiency of the biohybrid in the production of the charge-separated state in the RC. The kinetics of energy transfer and charge separation of hCyN7-RC studied via ultrafast visible and IR spectroscopies are here presented. The antenna transfers energy to RC chromophores within <10?ps and the rate of QA reduction is doubled compared to the native RC. These experiments further demonstrate hCyN7-RC, besides being an extremely efficient white light photoconverter, fully retains the charge separation mechanism and integrity of the native RC photoenzyme, thus allowing to envisage its suitability as biohybrid material in bioinspired systems for solar energy conversion. 相似文献
17.
18.
Conserved role of PROTON GRADIENT REGULATION 5 in the regulation of PSI cyclic electron transport 总被引:2,自引:0,他引:2
There are at least two photosynthetic cyclic electron transport (CET) pathways in most C3 plants: the NAD(P)H dehydrogenase (NDH)-dependent pathway and a pathway dependent upon putative ferredoxin:plastoquinone
oxidoreductase (FQR) activity. While the NDH complex has been identified, and shown to play a role in photosynthesis, especially
under stress conditions, less is known about the machinery of FQR-dependent CET. Recent studies indicate that FQR-dependent
CET is dependent upon PGR5, a small protein of unknown function. In a previous study we found that overexpression of PGR5 causes alterations in growth and development associated with decreased chloroplast development and a transient increase in
nonphotochemical quenching (NPQ) after the shift from dark to light. In the current study we examine the spatiotemporal expression
pattern of PGR5, and the effects of overexpression of PGR5 in Arabidopsis under a host of light and stress conditions. To investigate the conserved function of PGR5, we cloned PGR5 from a species which apparently lacks NDH, loblolly pine, and overexpressed it in Arabidopsis. Although greening of cotyledons
was severely delayed in overexpressing lines under low light, mature plants survived exposure to high light and drought stress
better than wild-type. In addition, PSI was more resistant to high light in the PGR5 overexpressors than in wild-type plants, while PSII was more sensitive to this stress. These complex responses corresponded
to alterations in linear and cyclic electron transfer, suggesting that over-accumulation of PGR5 induces pleiotropic effects,
probably via elevated CET. We conclude that PGR5 has a developmentally-regulated, conserved role in mediating CET. 相似文献
19.
The (bacterio)chlorophylls of photosynthetic antenna and reaction centre complexes are bound to the protein via a fifth, axial ligand to the central magnesium atom. A number of the amino acids identified as providing such ligands are conserved between the large antenna of the cyanobacterial Type-I reaction centre and smaller antennas of the Type-I reaction centres of green sulphur bacteria and heliobacteria, and these numbers match closely the estimated number of antenna bacteriochlorophylls in the latter. The possible organisation of the antenna in the latter reaction centres is discussed, as is the mechanism by which the more pigment-rich antenna of the cyanobacterial reaction centre evolved. The homology modelling approach is also extended to the six-helix antenna proteins CP47 and CP43 associated with the Photosystem II reaction centre. 相似文献
20.
光质对中华盒形藻生长及生化组成的影响 总被引:8,自引:0,他引:8
中华盒形藻的增殖率在白光下最大,蓝光下次之,红光下最小。叶绿素、蛋白质的合成明显受蓝光促进,而红光下碳经合物含量增加。脂类含量在蓝光、红光下均有所下降。 相似文献