首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The malate-aspartate NADH shuttle in mammalian cells requires the activity of the mitochondrial aspartate-glutamate carrier (AGC). Recently, we identified in man two AGC isoforms, aralar1 and citrin, which are regulated by calcium on the external face of the inner mitochondrial membrane. We have now identified Agc1p as the yeast counterpart of the human AGC. The corresponding gene was overexpressed in bacteria and yeast mitochondria, and the protein was reconstituted in liposomes where it was identified as an aspartate-glutamate transporter from its transport properties. Furthermore, yeast cells lacking Agc1p were unable to grow on acetate and oleic acid, and had reduced levels of valine, ornithine and citrulline; in contrast they grew on ethanol. Expression of the human AGC isoforms can replace the function of Agc1p. However, unlike its human orthologues, yeast Agc1p catalyses both aspartate-glutamate exchange and substrate uniport activities. We conclude that Agc1p performs two metabolic roles in Saccharomyces cerevisiae. On the one hand, it functions as a uniporter to supply the mitochondria with glutamate for nitrogen metabolism and ornithine synthesis. On the other, the Agc1p, as an aspartate-glutamate exchanger, plays a role within the malate-aspartate NADH shuttle which is critical for the growth of yeast on acetate and fatty acids as carbon sources. These results provide strong evidence of the existence of a malate-aspartate NADH shuttle in yeast.  相似文献   

2.
Mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides, and coenzymes across the mitochondrial membrane. The function of only a few of the 35 Saccharomyces cerevisiae mitochondrial carriers still remains to be uncovered. In this study, we have functionally defined and characterized the S. cerevisiae mitochondrial carrier Yhm2p. The YHM2 gene was overexpressed in S. cerevisiae, and its product was purified and reconstituted into liposomes. Its transport properties, kinetic parameters, and targeting to mitochondria show that Yhm2p is a mitochondrial transporter for citrate and oxoglutarate. Reconstituted Yhm2p also transported oxaloacetate, succinate, and fumarate to a lesser extent, but virtually not malate and isocitrate. Yhm2p catalyzed only a counter-exchange transport that was saturable and inhibited by sulfhydryl-blocking reagents but not by 1,2,3-benzenetricarboxylate (a powerful inhibitor of the citrate/malate carrier). The physiological role of Yhm2p is to increase the NADPH reducing power in the cytosol (required for biosynthetic and antioxidant reactions) and probably to act as a key component of the citrate-oxoglutarate NADPH redox shuttle between mitochondria and cytosol. This protein function is based on observations documenting a decrease in the NADPH/NADP+ and GSH/GSSG ratios in the cytosol of ΔYHM2 cells as well as an increase in the NADPH/NADP+ ratio in their mitochondria compared with wild-type cells. Our proposal is also supported by the growth defect displayed by the ΔYHM2 strain and more so by the ΔYHM2ΔZWF1 strain upon H2O2 exposure, implying that Yhm2p has an antioxidant function.  相似文献   

3.
The yeast Saccharomyces cerevisiae is a facultative anaerobe and its mitochondrial morphology is linked to its metabolic activity. The Sco proteins (Sco1p and Sco2p) were characterized as proteins required for copper delivery to cytochrome c oxidase. Our results indicated a higher fermentative capacity of the sco1-Δ mutant in comparison to the control and the sco2-Δ mutant strains. The mitochondrial proteome analysis showed that the sco1-Δ mutant down-regulated components of the respiratory chain, the TCA cycle and transport of metabolites across the mitochondrial membrane. This evidence suggests that the absence of Sco1p causes irreversible damage to the mitochondria.  相似文献   

4.
Haferkamp I 《FEBS letters》2007,581(12):2375-2379
Sequencing of plant genomes allowed the identification of various members of the mitochondrial carrier family (MCF). In plants, these structurally related proteins are involved in the transport of solutes like nucleotides, phosphate, di- and tricarboxylates across the mitochondrial membrane and therefore exhibit physiological functions similar to known isoforms from animal or yeast mitochondria. Interestingly, various studies led to the recognition of MCF proteins which mediate the transport of different substrates like folates, S-adenosylmethionine, ADPglucose or ATP, ADP and AMP in plastids.  相似文献   

5.
《BBA》2013,1827(10):1245-1255
The mitochondrial carriers are members of a family of transport proteins that mediate solute transport across the inner mitochondrial membrane. Two isoforms of the glutamate carriers, GC1 and GC2 (encoded by the SLC25A22 and SLC25A18 genes, respectively), have been identified in humans. Two independent mutations in SLC25A22 are associated with severe epileptic encephalopathy. In the present study we show that two genes (CG18347 and CG12201) phylogenetically related to the human GC encoding genes are present in the D. melanogaster genome. We have functionally characterized the proteins encoded by CG18347 and CG12201, designated as DmGC1p and DmGC2p respectively, by overexpression in Escherichia coli and reconstitution into liposomes. Their transport properties demonstrate that DmGC1p and DmGC2p both catalyze the transport of glutamate across the inner mitochondrial membrane. Computational approaches have been used in order to highlight residues of DmGC1p and DmGC2p involved in substrate binding. Furthermore, gene expression analysis during development and in various adult tissues reveals that CG18347 is ubiquitously expressed in all examined D. melanogaster tissues, while the expression of CG12201 is strongly testis-biased. Finally, we identified mitochondrial glutamate carrier orthologs in 49 eukaryotic species in order to attempt the reconstruction of the evolutionary history of the glutamate carrier function. Comparison of the exon/intron structure and other key features of the analyzed orthologs suggests that eukaryotic glutamate carrier genes descend from an intron-rich ancestral gene already present in the common ancestor of lineages that diverged as early as bilateria and radiata.  相似文献   

6.
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown.  相似文献   

7.
《BBA》2019,1860(9):724-733
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family. In this work, two members of this family, UCP5 (BMCP1, brain mitochondrial carrier protein 1 encoded by SLC25A14) and UCP6 (KMCP1, kidney mitochondrial carrier protein 1 encoded by SLC25A30) have been thoroughly characterized biochemically. They were overexpressed in bacteria, purified and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that UCP5 and UCP6 transport inorganic anions (sulfate, sulfite, thiosulfate and phosphate) and, to a lesser extent, a variety of dicarboxylates (e.g. malonate, malate and citramalate) and, even more so, aspartate and (only UCP5) glutamate and tricarboxylates. Both carriers catalyzed a fast counter-exchange transport and a very low uniport of substrates. Transport was saturable and inhibited by mercurials and other mitochondrial carrier inhibitors at various degrees. The transport affinities of UCP5 and UCP6 were higher for sulfate and thiosulfate than for any other substrate, whereas the specific activity of UCP5 was much higher than that of UCP6. It is proposed that a main physiological role of UCP5 and UCP6 is to catalyze the export of sulfite and thiosulfate (the H2S degradation products) from the mitochondria, thereby modulating the level of the important signal molecule H2S.  相似文献   

8.
《BBA》2014,1837(2):326-334
The genome of Saccharomyces cerevisiae contains 35 members of the mitochondrial carrier family, nearly all of which have been functionally characterized. In this study, the identification of the mitochondrial carrier for adenosine 5′-phosphosulfate (APS) is described. The corresponding gene (YPR011c) was overexpressed in bacteria. The purified protein was reconstituted into phospholipid vesicles and its transport properties and kinetic parameters were characterized. It transported APS, 3′-phospho-adenosine 5′-phosphosulfate, sulfate and phosphate almost exclusively by a counter-exchange mechanism. Transport was saturable and inhibited by bongkrekic acid and other inhibitors. To investigate the physiological significance of this carrier in S. cerevisiae, mutants were subjected to thermal shock at 45 °C in the presence of sulfate and in the absence of methionine. At 45 °C cells lacking YPR011c, engineered cells (in which APS is produced only in mitochondria) and more so the latter cells, in which the exit of mitochondrial APS is prevented by the absence of YPR011cp, were less thermotolerant. Moreover, at the same temperature all these cells contained less methionine and total glutathione than wild-type cells. Our results show that S. cerevisiae mitochondria are equipped with a transporter for APS and that YPR011cp-mediated mitochondrial transport of APS occurs in S. cerevisiae under thermal stress conditions.  相似文献   

9.
Mitochondria play essential metabolic functions in eukaryotes. Although their major role is the generation of energy in the form of ATP, they are also involved in maintenance of cellular redox state, conversion and biosynthesis of metabolites and signal transduction. Most mitochondrial functions are conserved in eukaryotic systems and mitochondrial dysfunctions trigger several human diseases.By using multi-omics approach, we investigate the effect of methionine supplementation on yeast cellular metabolism, considering its role in the regulation of key cellular processes. Methionine supplementation induces an up-regulation of proteins related to mitochondrial functions such as TCA cycle, electron transport chain and respiration, combined with an enhancement of mitochondrial pyruvate uptake and TCA cycle activity. This metabolic signature is more noticeable in cells lacking Snf1/AMPK, the conserved signalling regulator of energy homeostasis. Remarkably, snf1Δ cells strongly depend on mitochondrial respiration and suppression of pyruvate transport is detrimental for this mutant in methionine condition, indicating that respiration mostly relies on pyruvate flux into mitochondrial pathways.These data provide new insights into the regulation of mitochondrial metabolism and extends our understanding on the role of methionine in regulating energy signalling pathways.  相似文献   

10.
The nuclear genome of Saccharomyces cerevisiae encodes 35 members of a family of membrane proteins. Known members transport substrates and products across the inner membranes of mitochondria. We have localized two hitherto unidentified family members, Odc1p and Odc2p, to the inner membranes of mitochondria. They are isoforms with 61% sequence identity, and we have shown in reconstituted liposomes that they transport the oxodicarboxylates 2-oxoadipate and 2-oxoglutarate by a strict counter exchange mechanism. Intraliposomal adipate and glutarate and to a lesser extent malate and citrate supported [14C]oxoglutarate uptake. The expression of Odc1p, the more abundant isoform, made in the presence of nonfermentable carbon sources, is repressed by glucose. The main physiological roles of Odc1p and Odc2p are probably to supply 2-oxoadipate and 2-oxoglutarate from the mitochondrial matrix to the cytosol where they are used in the biosynthesis of lysine and glutamate, respectively, and in lysine catabolism.  相似文献   

11.
In the vacuolar basic amino acid (VBA) transporter family of Saccharomyces cerevisiae, VBA4 encodes a vacuolar membrane protein with 14 putative transmembrane helices. Transport experiments with isolated vacuolar membrane vesicles and estimation of the amino acid contents in vacuoles showed that Vba4p is not likely involved in the transport of amino acids. We found that the vba4Δ cells, as well as vba1Δ and vba2Δ cells, showed increased susceptibility to several drugs, particularly to azoles. Although disruption of the VBA4 gene did not affect the salt tolerance of the cells, vacuolar fragmentation observed under high salt conditions was less prominent in vba4Δ cells than in wild type, vba1Δ, and vba2Δ cells. Vba4p differs from Vba1p and Vba2p as a vacuolar transporter but is important for the drug resistance and vacuolar morphology of S. cerevisiae.  相似文献   

12.

Background

Rigorous study of mitochondrial functions and cell biology in the budding yeast, Saccharomyces cerevisiae has advanced our understanding of mitochondrial genetics. This yeast is now a powerful model for population genetics, owing to large genetic diversity and highly structured populations among wild isolates. Comparative mitochondrial genomic analyses between yeast species have revealed broad evolutionary changes in genome organization and architecture. A fine-scale view of recent evolutionary changes within S. cerevisiae has not been possible due to low numbers of complete mitochondrial sequences.

Results

To address challenges of sequencing AT-rich and repetitive mitochondrial DNAs (mtDNAs), we sequenced two divergent S. cerevisiae mtDNAs using a single-molecule sequencing platform (PacBio RS). Using de novo assemblies, we generated highly accurate complete mtDNA sequences. These mtDNA sequences were compared with 98 additional mtDNA sequences gathered from various published collections. Phylogenies based on mitochondrial coding sequences and intron profiles revealed that intraspecific diversity in mitochondrial genomes generally recapitulated the population structure of nuclear genomes. Analysis of intergenic sequence indicated a recent expansion of mobile elements in certain populations. Additionally, our analyses revealed that certain populations lacked introns previously believed conserved throughout the species, as well as the presence of introns never before reported in S. cerevisiae.

Conclusions

Our results revealed that the extensive variation in S. cerevisiae mtDNAs is often population specific, thus offering a window into the recent evolutionary processes shaping these genomes. In addition, we offer an effective strategy for sequencing these challenging AT-rich mitochondrial genomes for small scale projects.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1664-4) contains supplementary material, which is available to authorized users.  相似文献   

13.
The Saccharomyces cerevisiae homolog of the ATP-dependent Lon protease, Pim1p, is essential for mitochondrial protein quality control, DNA maintenance, and respiration. Here, we demonstrate that Pim1p activity declines in aging cells and that Pim1p deficiency shortens the replicative life span of yeast mother cells. This accelerated aging of pim1Δ cells is accompanied by elevated cytosolic levels of oxidized and aggregated proteins, as well as reduced proteasome activity. Overproduction of Hsp104p greatly diminishes aggregation of oxidized cytosolic proteins, rescues proteasome activity, and restores life span of pim1Δ cells to near wild-type levels. Our results show that defects in mitochondrial protein quality control have global intracellular effects leading to the increased generation of misfolded proteins and cytosolic protein aggregates, which are linked to a decline in replicative potential.  相似文献   

14.
Previous studies demonstrated that loss of CL in the yeast mutant crd1Δ leads to perturbation of mitochondrial iron‑sulfur (FeS) cluster biogenesis, resulting in decreased activity of mitochondrial and cytosolic Fe-S-requiring enzymes, including aconitase and sulfite reductase. In the current study, we show that crd1Δ cells exhibit decreased levels of glutamate and cysteine and are deficient in the essential antioxidant, glutathione, a tripeptide of glutamate, cysteine, and glycine. Glutathione is the most abundant non-protein thiol essential for maintaining intracellular redox potential in almost all eukaryotes, including yeast. Consistent with glutathione deficiency, the growth defect of crd1Δ cells at elevated temperature was rescued by supplementation of glutathione or glutamate and cysteine. Sensitivity to the oxidants iron (FeSO4) and hydrogen peroxide (H2O2), was rescued by supplementation of glutathione. The decreased intracellular glutathione concentration in crd1Δ was restored by supplementation of glutamate and cysteine, but not by overexpressing YAP1, an activator of expression of glutathione biosynthetic enzymes. These findings show for the first time that CL plays a critical role in regulating intracellular glutathione metabolism.  相似文献   

15.
16.
A mitochondrial carrier family (MCF) of transport proteins facilitates the transfer of charged small molecules across the inner mitochondrial membrane. The human genome has ∼50 genes corresponding to members of this family. All MCF proteins contain three repeats of a characteristic and conserved PX(D/E)XX(K/R) motif thought to be central to the mechanism of these transporters. The mammalian mitochondrial folate transporter (MFT) is one of a few MCF members, known as the P(I/L)W subfamily, that have evolved a tryptophan residue in place of the (D/E) in the second conserved motif; the function of this substitution (Trp-142) is unclear. Molecular dynamics simulations of the MFT in its explicit membrane environment identified this tryptophan, as well as several other residues lining the transport cavity, to be involved in a series of sequential interactions that coordinated the movement of the tetrahydrofolate substrate within the transport cavity. We probed the function of these residues by mutagenesis. The mutation of every residue identified by molecular dynamics to interact with tetrahydrofolate during simulated transit into the aqueous channel severely impaired folate transport. Mutation of the subfamily-defining tryptophan residue in the MFT to match the MCF consensus at this position (W142D) was incompatible with cell survival. These studies indicate that MFT Trp-142, as well as other residues lining the transporter interior, coordinate tetrahydrofolate descent and positioning of the substrate in the transporter basin. Overall, we identified residues in the walls and at the base of the transport cavity that are involved in substrate recognition by the MFT.  相似文献   

17.
The yeast proteins Mrs3p and Mrs4p are two closely related members of the mitochondrial carrier family (MCF), which had previously been implicated in mitochondrial Fe2+ homeostasis. A vertebrate Mrs3/4 homologue named mitoferrin was shown to be essential for erythroid iron utilization and proposed to function as an essential mitochondrial iron importer. Indirect reporter assays in isolated yeast mitochondria indicated that the Mrs3/4 proteins are involved in mitochondrial Fe2+ utilization or transport under iron-limiting conditions. To have a more direct test for Mrs3/4p mediated iron uptake into mitochondria we studied iron (II) transport across yeast inner mitochondrial membrane vesicles (SMPs) using the iron-sensitive fluorophore PhenGreen SK (PGSK). Wild-type SMPs showed rapid uptake of Fe2+ which was driven by the external Fe2+ concentration and stimulated by acidic pH. SMPs from the double deletion strain mrs3/4Δ failed to show this rapid Fe2+ uptake, while SMPs from cells overproducing Mrs3/4p exhibited increased Fe2+ uptake rates. Cu2+ was transported at similar rates as Fe2+, while other divalent cations, such as Zn2+ and Cd2+ apparently did not serve as substrates for the Mrs3/4p transporters. We conclude that the carrier proteins Mrs3p and Mrs4p transport Fe2+ across the inner mitochondrial membrane. Their activity is dependent on the pH gradient and it is stimulated by iron shortage.  相似文献   

18.
The PIF1 and MRS2 gene products have previously been shown to be essential for mitochondrial DNA maintenance at elevated temperatures and mitochondrial group II intron splicing, respectively, in the yeast Saccharomyces cerevisiae. A multicopy suppressor capable of rescuing the respiratory deficient phenotype associated with null alleles of either gene has been isolated. This suppressor is a nuclear gene that was called RIM2/MRS12. The RIM2/MRS12 gene encodes a predicted protein of 377 amino acids that is essential for mitochondrial DNA metabolism and proper cell growth. Inactivation of this gene causes the total loss of mitochondrial DNA and, compared to wild-type rhoo controls, a slow-growth phenotype on media containing glucose. Analysis of the RIM2/MRS12 protein sequence suggests that RIM2/MRS12 encodes a novel member of the mitochondrial carrier family. In particular, a typical triplicate structure, where each repeat consists of two putative transmembrane segments separated by a hydrophilic loop, can be deduced from amino acid sequence comparisons and the hydropathy profile of RIM2/MRS12. Antibodies directed against the aminoterminus of RIM2/MRS12 detect this protein in mitochondria. The function of the RIM2/MRS12 protein and the substrates it might transport are discussed.  相似文献   

19.
The vacuolar membrane proteins Ypq1p, Ypq2p, and Ypq3p of Saccharomyces cerevisiae are known as the members of the PQ-loop protein family. We found that the ATP-dependent uptake activities of arginine and histidine by the vacuolar membrane vesicles were decreased by ypq2Δ and ypq3Δ mutations, respectively. YPQ1 and AVT1, which are involved in the vacuolar uptake of lysine/arginine and histidine, respectively, were deleted in addition to ypq2Δ and ypq3Δ. The vacuolar membrane vesicles isolated from the resulting quadruple deletion mutant ypq1Δypq2Δypq3Δavt1Δ completely lost the uptake activity of basic amino acids, and that of histidine, but not lysine and arginine, was evidently enhanced by overexpressing YPQ3 in the mutant. These results suggest that Ypq3p is specifically involved in the vacuolar uptake of histidine in S. cerevisiae. The cellular level of Ypq3p-HA3 was enhanced by depletion of histidine from culture medium, suggesting that it is regulated by the substrate.  相似文献   

20.
The exchange between external [14C] citrate and internal citrate, malate or phosphoenopyruvate can be reconstituted with a Triton extract of submitochondrial particles from rat liver. The reconstituted activity is dependent on the phospholipid composition of the liposomes and is influenced by the simultaneously incorporated Triton. The kinetic properties, the substrate and tissue specificity, and the inhibitor sensitivity of citrate transport in liposomes are similar to those described for the tricarboxylate transport in mitochondria. The maximal rate of citrate exchange in the reconstituted system (13.5 μmol × min?1 × g?1 at 25°C and pH 7.5) accounts for 12% of the original mitochondrial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号