首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inhibiting the growth of tumor vasculature represents one of the relevant strategies against tumor progression. Between all the different pro-angiogenic molecular targets, plasma membrane glycosphingolipids have been under-investigated. In this present study, we explore the anti-angiogenic therapeutic advantage of a tumor immunotherapy targeting the globotriaosylceramide Gb3. In this purpose, a monoclonal antibody against Gb3, named 3E2 was developed and characterized. We first demonstrate that Gb3 is over-expressed in proliferative endothelial cells relative to quiescent cells. Then, we demonstrate that 3E2 inhibits endothelial cell proliferation in vitro by slowing endothelial cell proliferation and by increasing mitosis duration. Antibody 3E2 is further effective in inhibiting ex vivo angiogenesis in aorta ring assays. Moreover, 3E2 treatment inhibits NXS2 neuroblastoma development and liver metastases spreading in A/J mice. Immunohistology examination of the NXS2 metastases shows that only endothelial cells, but not cancer cells express Gb3. Finally, 3E2 treatment diminishes tumor vessels density, proving a specific therapeutic action of our monoclonal antibody to tumor vasculature. Our study demonstrates that Gb3 is a viable alternative target for immunotherapy and angiogenesis inhibition.  相似文献   

2.
内皮细胞过度增殖引起的病理性血管生成是肿瘤、类风湿性关节炎等发病的关键环节。内皮细胞增殖由血管内皮细胞生长因子等促血管生成因子提供促增殖信号,而新近发现的多种内皮增殖抑制因子,如血管内皮抑素、血管抑素、血小板反应蛋白-1、微囊蛋白1、某些microRNAs和某些抑癌基因等,则通过抑制促增殖信号、调节细胞周期、诱导细胞凋亡等途径下调内皮细胞的增殖及血管生成。内皮增殖抑制因子可望成为病理性血管生成防治的新靶点。  相似文献   

3.
Human mesenchymal stem cells (hMSCs) are mostly studied for their potential clinical use. Recently, much attention in the field of cancer research has been paid to hMSCs. In this study, we investigated the influence of hMSCs on the proliferation of lung cancer cell lines SK-MES-1 and A549 in vitro and in vivo by using a co-culture system and the hMSCs-conditioned medium. Our results demonstrated that hMSCs could inhibit the proliferation of SK-MES-1 and A549 cells, and induce the apoptosis of tumor cells in vitro via some soluble factors. Animal study showed that these soluble factors from hMSCs could suppress tumorigenesis and tumor angiogenesis by treating preliminarily tumor cells with the hMSCs-conditioned medium. The downregulated expression of vascular endothelial growth factor in tumor cells might be the mechanism of interference in tumor angiogenesis, which was verified by western blot analysis and immunohistochemistry assay. Taken together, our results suggested that the hMSCs could inhibit tumor cell growth by secreting some soluble factors.  相似文献   

4.
The aberrant signaling activation of vascular endothelial growth factor receptor (VEGFR) and urokinase plasminogen activator (uPA) is a common characteristic of many tumors, including lung cancer. Accordingly, VEGFR and uPA have emerged as attractive targets for tumor. KDR (Flk-1/VEGFR-2), a member of the VEGFR family, has been recognized as an important target for antiangiogenesis in tumor. In this study, a recombinant immunotoxin was produced to specifically target KDR-expressing tumor vascular endothelial cells and uPA-expressing tumor cells and mediate antitumor angiogenesis and antitumor effect. Based on its potent inhibitory effect on protein synthesis, Luffin-beta (Lβ) ribosome-inactivating protein was selected as part of a recombinant fusion protein, a single-chain variable fragment against KDR (KDRscFv)-uPA cleavage site (uPAcs)-Lβ-KDEL (named as KPLK). The KDRscFv-uPAcs-Lβ-KDEL (KPLK) contained a single-chain variable fragment (scFv) against KDR, uPAcs, Lβ, and the retention signal for endoplasmic reticulum proteins KDEL (Lys-Asp-Glu-Leu). The KPLK-expressing vector was expressed in Escherichia coli, and the KPLK protein was isolated with nickel affinity chromatography and gel filtration chromatography. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis test demonstrated KPLK was effectively expressed. Result of in vitro cell viability assay on non-small cell lung cancer (NSCLC) H460 cell line (uPA-positive cell) revealed that KPLK significantly inhibited cell proliferation, induced apoptosis, and accumulated cells in S and G2/M phases, but the normal cell line (human submandibular gland cell) was unaffected. These effects were enhanced when uPA was added to digest KPLK to release Lβ. For in vivo assay of KPLK, subcutaneous xenograft tumor model of nude mice were established with H460 cells. Growth of solid tumors was significantly inhibited in animals treated with KPLK up to 21 days, tumor weights were decreased, and the expression of angiogenesis marker CD31 was downregulated; meanwhile, the apoptosis-related protein casspase-3 was upregulated. These results suggested that the recombinant KPLK may have therapeutic applications on tumors, especially uPA-overexpressing ones.  相似文献   

5.
Angiogenesis has a key role in the tumor progression and metastasis; targeting endothelial cell proliferation has emerged as a promising therapeutic strategy for the prevention of cancer. Previous studies have revealed a complex association between the process of angiogenesis and autophagy and its outcome on tumorigenesis. Autophagy, also known as type-II cell death, has been identified as an alternative way of cell killing in apoptotic-resistant cancer cells. However, its involvement in chemoresistance and tumor promotion is also well known. In this study, we used a derivate of natural product magnolol (Ery5), a potent autophagy inducer, to study the association between the autophagy and angiogenesis in both in vitro and in vivo model system. We found that the robust autophagy triggered by Ery5, inhibited angiogenesis and caused cell death independent of the apoptosis in human umbilical cord vein endothelial cells and PC-3 cells. Ery5 induced autophagy effectively inhibited cell proliferation, migration, invasion and tube formation. We further demonstrated that Ery5-mediated autophagy and subsequent inhibition of angiogenesis was reversed when autophagy was inhibited through 3-methyl adenine and knocking down of key autophagy proteins ATG7 and microtubule-associated protein light chain 3. While evaluating the negative regulation of autophagy on angiogenesis, it was interesting to find that angiogenic environment produced by the treatment of VEGF and CoCl2 remarkably downregulated the autophagy and autophagic cell death induced by Ery5. These studies, while disclosing the vital role of autophagy in the regulation of angiogenesis, also suggest that the potent modulators of autophagy can lead to the development of effective therapeutics in apoptosis-resistant cancer.  相似文献   

6.
Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) play a critical role in tumor-associated angiogenesis and have become the targets of anti-tumor therapy. The BALB/c mice were immunized with VEGF/bFGF complex peptide (VBP3) constructed with different epitope peptides of human VEGF and bFGF. The results of the immunogenicity showed that the VBP3 could effectively stimulate immune response in mice and elicit the mice to produce high titer specific anti-VEGF and anti-bFGF antibodies (anti-VBP3 antibodies). The polyclonal anti-VBP3 antibodies separated from the mouse immune serum could effectively inhibit the proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) and block the proliferation and migration of lung cancer A549 cells. Besides, the anti-VBP3 antibodies could effectively inhibit tumor growth and tumor angiogenesis in BABL/c nude mice. The results demonstrated that the VBP3 complex peptide could elicit the body to produce the high titer anti-VEGF and anti-bFGF antibodies, which showed anti-tumor and anti-angiogenic effects in vitro and in vivo. The results revealed that the VBP3 complex peptide could be used as a potential peptide vaccine in tumor therapy.  相似文献   

7.
8.

Background

The discovery of the importance of angiogenesis in tumor growth has emphasized the need to find specific vascular targets for tumor-targeted therapies. Previously, using phage display technology, we identified the peptide GX1 as having the ability to target the gastric cancer vasculature. The present study investigated the bioactivities of GX1, as well as its potential ability to cooperate with recombinant mutant human tumor necrosis factor alpha (rmhTNFα), in gastric cancer therapy.

Results

Tetrazolium salt (MTT) assay showed that GX1 could inhibit cell proliferation of both human umbilical vein endothelial cells (HUVEC) (44%) and HUVEC with tumor endothelium characteristics, generated by culturing in tumor-conditioned medium (co-HUVEC) (62%). Flow-cytometry (FCM) and western blot assays showed that GX1 increased the rate of apoptosis from 11% to 31% (p < 0.01) by up-regulating caspase 3 expression level. A chorioallantoic membrane assay indicated that GX1 could suppress neovascularization in vivo, with the microvessel count decreasing from 21 to 11 (p < 0.05). When GX1 was fused to rmhTNFα, GX1-rmhTNFα selectively concentrated in the gastric cancer vasculature, as shown by enzyme-linked immunosorbent assay, immunofluorescence and emission-computed tomography. In vitro MTT and FCM assays showed that, compared to rmhTNFα alone, GX1-rmhTNFα was more effective at suppressing co-HUVEC proliferation (45% vs. 61%, p < 0.05) and inducing apoptosis (11% vs. 23%, p < 0.05). In a tumor formation test, GX1-rmhTNFα more effectively inhibited tumor growth than rmhTNFα (tumor volume: 271 mm3 vs. 134 mm3, p < 0.05), with less systemic toxicity as measured by body weight (20.57 g vs. 19.30 g, p < 0.05). These therapeutic effects may be mediated by selectively enhanced tumor vascular permeability, as indicated by Evan's blue assay.

Conclusion

GX1 had both homing activity and the ability to inhibit vascular endothelial cell proliferation in vitro and neovascularization in vivo. Furthermore, when GX1 was conjugated to rmhTNFα, the fusion protein was selectively delivered to targeted tumor sites, significantly improving the anti-tumor activity of rmhTNFα and decreasing systemic toxicity. These results demonstrate the potential of GX1 as a homing peptide in vascular targeted therapy for gastric cancer.  相似文献   

9.
Regulation of hypoxia inducible factor (HIF)-1α stabilization, which in turn contributes to adaptation of tumor cells to hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. We have identified a new small molecule, G0811, as a potent angiogenesis inhibitor that targets HIF-1α signal transduction. G0811 suppressed HIF-1α stability in cancer cells and inhibited in vitro and in vivo angiogenesis, as validated by tube formation, chemoinvasion, and chorioallantoic membrane (CAM) assays. In addition, G0811 effectively decreased the expression of vascular endothelial growth factor (VEGF), which is one of target genes of HIF-1α. However, G0811 did not exhibit anti-proliferative activities or toxicity in human umbilical vein endothelial cells (HUVECs) at effective doses. These results demonstrate that G0811 could be a new angiogenesis inhibitor that acts by targeting HIF-1α signal transduction pathway.  相似文献   

10.
The induction of angiogenesis is a crucial step in tumor progression, and therefore, efficient inhibition of angiogenesis is considered a powerful strategy for the treatment of cancer. In the present study, we report that the lipophilic antimicrobial peptides from EML-CAP3, a new endophytic bacterial strain isolated from red pepper leaf (Capsicum annuum L.), exhibit potent antiangiogenic activity both in vitro and in vivo. The newly obtained antimicrobial peptides effectively inhibited the proliferation of human umbilical vein endothelial cells at subtoxic doses. Furthermore, the peptides suppressed the in vitro characteristics of angiogenesis such as endothelial cell invasion and tube formation stimulated by vascular endothelial growth factor, as well as neovascularization of the chorioallantoic membrane of growing chick embryos in vivo without showing cytotoxicity. Notably, the angiostatic peptides blocked tumor cell-induced angiogenesis by suppressing the expression levels of hypoxia-inducible factor-1α and its target gene, vascular endothelial growth factor (VEGF). To our knowledge, our findings demonstrate for the first time that the antimicrobial peptides from EML-CAP3 possess antiangiogenic potential and may thus be used for the treatment of hypervascularized tumors.  相似文献   

11.
Hemangioma is a tumor that causes vascular endothelial cell hyperplasia, which commonly occur in newborns. Angiogenesis inhibitor targets the processes of angiogenesis, including the proliferation of vascular endothelial cells. A DNA sequence named Scl was designed, recombined into Pichia Pastoris, expressed by fermenting the engineered strain in a bioreactor, and purified the recombinant Scl by SP-sepharose fast flow. Scl can inhibit CAM angiogenesis. Only 1 μg of Scl significantly suppressed the growth of CAM blood vessel, similar to that of 25 μg of angiostatin. Scl showed a strong cytotoxicity on hemangioma cell (ATCC CRL No. 2587). After the drug acted for 24 h, the OD 570 measured value of the PBS control group averaged 1.873, whereas that of the Sc1 drug group was 0.692 (P < 0.01). Using the DeadEndTM Fluorometric TUNEL System, the detection results showed that 92 % of hemangioma cell apoptosis was observed in the Scl protein group, but only 1.3 % in the PBS control group (P < 0.01). After 2 weeks of treatment with the hemangioma model (cock’s wattle) of the PBS group, 151 blood vessels with 100 views (40×) were obtained, whereas 250 in the PBS group (P < 0.01). During the two-week medication, the hemangioma model of the PBS group increased by 1.18 cm, whereas only 0.58 cm in the Scl drug group (P < 0.01).  相似文献   

12.
Angiogenesis occurs during tissue growth, development and wound healing. It is also required for tumor progression and represents a rational target for therapeutic intervention. NBM-T-BMX-OS01 (BMX), derived from the semisynthesis of osthole, an active ingredient isolated from Chinese herb Cnidium monnieri (L.) Cuss., was recently shown to enhance learning and memory in rats. In this study, we characterized the anti-angiogenic activities of NBM-T-BMX-OS01 (BMX) in an effort to develop novel inhibitors to suppress angiogenesis and tumor growth. BMX inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration and endothelial tube formation in human umbilical endothelial cells (HUVECs). BMX also attenuated VEGF-induced microvessel sprouting from aortic rings ex vivo and reduced HCT116 colorectal cancer cells-induced angiogenesis in vivo. Moreover, BMX inhibited the phosphorylation of VEGFR2, FAK, Akt and ERK in HUVECs exposed to VEGF. BMX was also shown to inhibit HCT116 cell proliferation and to suppress the growth of subcutaneous xenografts of HCT116 cells in vivo. Taken together, this study provides evidence that BMX modulates vascular endothelial cell remodeling and leads to the inhibition of tumor angiogenesis. These results also support the role of BMX as a potential drug candidate and warrant the clinical development in the treatment of cancer.  相似文献   

13.
Kwon YH  Jung SY  Kim JW  Lee SH  Lee JH  Lee BY  Kwon SM 《PloS one》2012,7(4):e33618

Background

There is increasing evidence that phloroglucinol, a compound from Ecklonia cava, induces the apoptosis of cancer cells, eventually suppressing tumor angiogenesis.

Methodology/Principal Findings

This is the first report on phloroglucinol''s ability to potentially inhibit the functional bioactivities of endothelial progenitor cells (EPCs) and thereby attenuate tumor growth and angiogenesis in the Lewis lung carcinoma (LLC)-tumor-bearing mouse model. Although Phloroglucinol did not affect their cell toxicity, it specifically inhibited vascular endothelial growth factor (VEGF) dependent migration and capillary-like tube formation of EPCs. Our matrigel plug assay clearly indicated that orally injected phloroglucinol effectively disrupts VEGF-induced neovessel formation. Moreover, we demonstrated that when phloroglucinol is orally administered, it significantly inhibits tumor growth and angiogenesis as well as CD45/CD34+ progenitor mobilization into peripheral blood in vivo in the LLC-tumor-bearing mouse model.

Conclusions/Significance

These results suggest a novel role for phloroglucinol: Phloroglucinol might be a modulator of circulating EPC bioactivities, eventually suppressing tumorigenesis. Therefore, phloroglucinol might be a candidate compound for biosafe drugs that target tumor angiogenesis.  相似文献   

14.
15.
人源性激肽释放酶结合蛋白(Kallistatin,Kal)是一种负性急性期内源性蛋白,与多种内皮相关性生理和病理过程密切相关,如血管生成及损伤修复、炎症、心功能不全、肾损伤、糖尿病等。炎症和氧化应激可引起内皮功能障碍,而Kal可抑制肿瘤坏死因子α引起的内皮细胞活化,通过KLF4-eNOS、PI3K-AKT-eNOS和AKT-FOXO1等信号通路,增加内皮细胞NO合酶的表达和NO生成,抑制内皮细胞损伤和凋亡。动物实验显示,Kal表达增加可减弱氧化应激诱导的细胞凋亡和器官损伤。基于内皮细胞所处的状态或来源,如健康或损伤情况,成熟内皮细胞或内皮祖细胞,Kal的作用可能有所区别。内皮细胞是参与肿瘤生长与转移的关键因素已达成共识,但肿瘤新生血管形成的机制尚待确认。Kal可诱导肿瘤内皮细胞凋亡,抑制肿瘤新生血管生成和肿瘤生长的能力已被证实。临床前研究结果表明,Kal具有多种药理作用,对氧化应激相关性疾病,特别是肿瘤治疗具有应用前景,但其药理作用的分子机制仍需深入探讨。  相似文献   

16.
Acute lung injury (ALI) and its more serious form, respiratory distress syndrome (ARDS), are considered as an acute and severe inflammatory process existing in lungs, and still remain high mortality rates. Tripartite motif 8 (TRIM8) contains an N-terminal RING finger, which is followed by two B-boxes and a coiled-coil domain, belonging to the TRIM/RBCC family and playing significant role in meditating inflammation, oxidative stress and apoptosis. In the study, we investigated the role of TRIM8 in ALI induced by lipopolysaccharide (LPS) and the underlying molecular mechanisms. The in vitro results indicated that LPS time-dependently enhanced TRIM8 expression in lung epithelial cells. Suppressing TRIM8 markedly ameliorated LPS-elicited inflammatory response, as evidenced by the down-regulated mRNA levels of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) in cells mainly through inactivating nuclear factor-kappa B (NF-κB) signaling pathway; however, over-expressing TRIM8 markedly promoted inflammation in LPS-challenged cells. In addition, LPS-induced oxidative stress was accelerated by TRIM8 over-expression, while being alleviated by TRIM8 knockdown by regulating Nrf2 signaling. Importantly, TRIM8 could negatively meditate AMP-activated protein kinase-α (AMPKα) activation to modulate LPS-triggered inflammatory response and ROS generation in vitro. Additionally, our in vivo findings suggested that TRIM8 knockdown effectively attenuated LPS-induced lung injury nu decrease of lung wet/dry (W/T) ratio, protein concentrations, neutrophil infiltration, myeloperoxidase (MPO) activity, reactive oxygen species (ROS) production and superoxide dismutase (SOD) depletion. Meanwhile, the loss of TRIM8 markedly lessened IL-1β, IL-6 and TNF-α expression in lung tissues of LPS-challenged mice, and reduced NF-κB phosphorylation. Furthermore, TRIM8 knockdown evidently improved nuclear factor-erythroid 2 related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions in lung of LPS-treated mice. The anti-inflammation and anti-oxidant role of TRIM8-silence might be associated with AMPKα phosphorylation. Together, our study firstly provided a support that TRIM8 knockdown effectively protected LPS-induced ALI against inflammation and oxidative stress largely dependent on the promotion of AMPKα pathway.  相似文献   

17.
Phosphoinositide 3-kinase (PI3K) pathway exerts its effects through Akt, its downstream target molecule, and thereby regulates various cell functions including cell proliferation, cell transformation, apoptosis, tumor growth, and angiogenesis. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been implicated in regulating cell survival signaling through the PI3K/Akt pathway. However, the mechanism by PI3K/PTEN signaling regulates angiogenesis and tumor growth in vivo remains to be elucidated. Vascular endothelial growth factor (VEGF) plays a pivotal role in tumor angiogenesis. The effect of PTEN on VEGF-mediated signal in pancreatic cancer is unknown. This study aimed to determine the effect of PTEN on both the expression of VEGF and angiogenesis. Toward that end, we used the siRNA knockdown method to specifically define the role of PTEN in the expression of VEGF and angiogenesis. We found that siRNA-mediated inhibition of PTEN gene expression in pancreatic cancer cells increase their VEGF secretion, up-modulated the proliferation, and migration of co-cultured vascular endothelial cell and enhanced tubule formation by HUVEC. In addition, PTEN modulated VEGF-mediated signaling and affected tumor angiogenesis through PI3K/Akt/VEGF/eNOS pathway.  相似文献   

18.
Platelets are key players in fundamental processes of vascular biology, such as angiogenesis, tissue regeneration, and tumor metastasis. However, the underlying mechanisms remain unclear. In this study, some tumor vascular endothelial cells were positively stained by antiplatelet antibodies. Further investigation revealed that platelets were taken up by endothelial cells in vitro and in vivo. Human umbilical vascular endothelial cells were rendered apoptotic under conditions of serum deprivation. However, endothelial apoptosis was suppressed and cell viability was enhanced when platelets were added to the cultures. Endothelial survival was paralleled by an upregulation of phosphorylated Akt and p70 S6K. In conclusion, this study demonstrated that platelets can be phagocytosed by endothelial cells, and the phagocytosed platelets could suppress endothelial apoptosis and promote cell viability level. The mechanism underlying this process involves the activation of Akt signaling.  相似文献   

19.
20.
Long non-coding RNAs (lncRNA) have been demonstrated to act as essential regulators in the development and progression of breast cancer. In our study, we found that long noncoding RNA SNHG15 was highly expressed in breast cancer tissues and cell lines. And the expression of SNHG15 was correlated with TNM stage, lymphnode metastasis and survival in breast cancer patients. SNHG15 knockdown significantly inhibited the proliferation and induced apoptosis in breast cancer cells in vitro and in vivo. Besides, SNHG15 downregulation suppressed cell migration and invasion in MCF-7 and BT-20 cells, and inhibited epithelial-mesenchymal transition (EMT). In mechanism, we found that SNHG15 acted as a competing endogenous RNA to sponge miR-211-3p, which was downregulated in breast cancers and inhibited cell proliferation and migration. Our results showed that there was a negative correlation between SNHG15 and miR-211-3p expression in breast cancer patients. Collectively, we, for the first time, revealed the functions of SNHG15 and miR-211-3p in breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号