首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《BBA》2020,1861(10):148256
Flavodiiron proteins (FDPs) of photosynthetic organisms play a photoprotective role by reducing oxygen to water and thus avoiding the accumulation of excess electrons on the photosystem I (PSI) acceptor side under stress conditions. In Synechocystis sp. PCC 6803 grown under high CO2, both FDPs Flv1 and Flv3 are indispensable for oxygen reduction. We performed a detailed in vivo kinetic study of wild-type (WT) and Δflv1/3 strains of Synechocystis using light-induced NADPH fluorescence and near-infrared absorption of iron-sulfur clusters from ferredoxin and the PSI acceptors (FAFB), collectively named FeS. These measurements were performed under conditions where the Calvin-Benson cycle is inactive or poorly activated. Under such conditions, the NADPH decay following a short illumination decays in parallel in both strains and exhibits a time lag which is correlated to the presence of reduced FeS. On the contrary, reduced FeS decays much faster in WT than in Δflv1/3 (13 vs 2 s−1). These data unambiguously show that reduced ferredoxin, or possibly reduced FAFB, is the direct electron donor to the Flv1/Flv3 heterodimer. Evidences for large reduction of (FAFB) and recombination reactions within PSI were also provided by near-infrared absorption. Mutants lacking either the NDH1-L complex, the homolog of complex I of respiration, or the Pgr5 protein show no difference with WT in the oxidation of reduced FeS following a short illumination. These observations question the participation of a significant cyclic electron flow in cyanobacteria during the first seconds of the induction phase of photosynthesis.  相似文献   

2.
In oxygenic photosynthetic organisms, excluding angiosperms, flavodiiron proteins (FDPs) catalyze light‐dependent reduction of O2 to H2O. This alleviates electron pressure on the photosynthetic apparatus and protects it from photodamage. In Synechocystis sp. PCC 6803, four FDP isoforms function as hetero‐oligomers of Flv1 and Flv3 and/or Flv2 and Flv4. An alternative electron transport pathway mediated by the NAD(P)H dehydrogenase‐like complex (NDH‐1) also contributes to redox hemostasis and the photoprotection of photosynthesis. Four NDH‐1 types have been characterized in cyanobacteria: NDH‐11 and NDH‐12, which function in respiration; and NDH‐13 and NDH‐14, which function in CO2 uptake. All four types are involved in cyclic electron transport. Along with single FDP mutants (?flv1 and Δflv3) and the double NDH‐1 mutants (?d1d2, which is deficient in NDH‐11,2 and ?d3d4, which is deficient in NDH‐13,4), we studied triple mutants lacking one of Flv1 or Flv3, and NDH‐11,2 or NDH‐13,4. We show that the presence of either Flv1/3 or NDH‐11,2, but not NDH‐13,4, is indispensable for survival during changes in growth conditions from high CO2/moderate light to low CO2/high light. Our results show functional redundancy between FDPs and NDH‐11,2 under the studied conditions. We suggest that ferredoxin probably functions as a primary electron donor to both Flv1/3 and NDH‐11,2, allowing their functions to be dynamically coordinated for efficient oxidation of photosystem I and for photoprotection under variable CO2 and light availability.  相似文献   

3.
Oxygenic phototrophs are vulnerable to damage by reactive oxygen species (ROS) that are produced in photosystem I (PSI) by excess photon energy over the demand of photosynthetic CO2 assimilation. In plant leaves, repetitive short-pulse (rSP) illumination produces ROS to inactivate PSI. The production of ROS is alleviated by oxidation of the reaction center chlorophyll in PSI, P700, during the illumination with the short-pulse light, which is supported by flavodiiron protein (FLV). In this study, we found that in the cyanobacterium Synechocystis sp. PCC 6803 P700 was oxidized and PSI was not inactivated during rSP illumination even in the absence of FLV. Conversely, the mutant deficient in respiratory terminal oxidases was impaired in P700 oxidation during the illumination with the short-pulse light to suffer from photo-oxidative damage in PSI. Interestingly, the other cyanobacterium Synechococcus sp. PCC 7002 could not oxidize P700 without FLV during rSP illumination. These data indicate that respiratory terminal oxidases are critical to protect PSI from ROS damage during rSP illumination in Synechocystis sp. PCC 6803 but not Synechococcus sp. PCC 7002.  相似文献   

4.
Oxygenic photosynthesis evolved with cyanobacteria, the ancestors of plant chloroplasts. The highly oxidizing chemistry of water splitting required concomitant evolution of efficient photoprotection mechanisms to safeguard the photosynthetic machinery. The role of flavodiiron proteins (FDPs), originally called A-type flavoproteins or Flvs, in this context has only recently been appreciated. Cyanobacterial FDPs constitute a specific protein group that evolved to protect oxygenic photosynthesis. There are four FDPs in Synechocystis sp. PCC 6803 (Flv1 to Flv4). Two of them, Flv2 and Flv4, are encoded by an operon together with a Sll0218 protein. Their expression, tightly regulated by CO2 levels, is also influenced by changes in light intensity. Here we describe the overexpression of the flv4-2 operon in Synechocystis sp. PCC 6803 and demonstrate that it results in improved photochemistry of PSII. The flv4-2/OE mutant is more resistant to photoinhibition of PSII and exhibits a more oxidized state of the plastoquinone pool and reduced production of singlet oxygen compared with control strains. Results of biophysical measurements indicate that the flv4-2 operon functions in an alternative electron transfer pathway from PSII, and thus alleviates PSII excitation pressure by channeling up to 30% of PSII-originated electrons. Furthermore, intact phycobilisomes are required for stable expression of the flv4-2 operon genes and for the Flv2/Flv4 heterodimer-mediated electron transfer mechanism. The latter operates in photoprotection in a complementary way with the orange carotenoid protein-related nonphotochemical quenching. Expression of the flv4-2 operon and exchange of the D1 forms in PSII centers upon light stress, on the contrary, are mutually exclusive photoprotection strategies among cyanobacteria.Photosynthetic light reactions are evolutionarily highly conserved among oxygenic photosynthetic organisms from cyanobacteria to higher plants. Because of dangerous chemistry of the water splitting reactions, oxygenic photosynthesis produces reactive oxygen species (ROS) and other radicals that potentially could destroy the photosynthetic machinery. To avoid permanent damage, all oxygenic photosynthetic organisms are equipped with an array of various photoprotective and regulatory mechanisms. Accumulating evidence on these regulatory mechanisms has revealed vast evolutionary differences between organisms performing oxygenic photosynthesis.Photosynthetic organisms have a capacity to adjust to different light intensities and to changes in the availability of electron sinks, which depends largely on metabolic cues. When light or metabolic conditions change, photosystems can dissipate excess energy as heat in nonphotochemical energy dissipation processes in the light-harvesting antenna systems (for review, see Horton et al., 1996; Müller et al., 2001). Cyanobacteria have phycobilisomes (PBs) as light-harvesting antenna, which also participate in state transitions (for review, see van Thor et al., 1998; Mullineaux and Emlyn-Jones, 2005) and nonphotochemical quenching (NPQ) of excitation energy (for review, see Bailey and Grossman, 2008). Both of these processes are involved in short-term regulation of light-harvesting processes and concomitantly function as photoprotective mechanisms. These nonphotochemical energy quenching mechanisms, however, have only limited capacity, and it often occurs that more electrons are excited than can be safely used in photochemistry for reduction of natural metabolic electron acceptors, particularly under stress conditions. In such situations, electrons can be directed, for example, to molecular oxygen resulting in production of ROS. To avoid harmful reactions by ROS that threaten the cell viability, a repertoire of different photoprotection mechanisms have evolved in cyanobacteria as well as in all other oxygenic photosynthetic organisms.Flavodiiron proteins (FDPs), originally called A-type flavoproteins or Flvs (Wasserfallen et al., 1998), were recently demonstrated to have an important role in photoprotection of the photosynthetic machinery (Zhang et al., 2009, 2012; Allahverdiyeva et al., 2011, 2013; Ermakova et al., 2013). FDPs in general are most widespread among strict and facultative anaerobic bacteria. Many of their FDPs have been characterized structurally and functionally, showing homodimeric or homotetrameric forms (Vicente et al., 2008b, 2009). A typical FDP consists of a core composed of a metallo-β-lactamase-like domain and a C-terminal flavodoxin domain. The former domain contains a nonheme diiron center, whereas the latter harbors a FMN moiety. It has been shown that FDPs in anaerobic bacteria are involved in O2 and/or NO detoxification (Vicente et al., 2008a). Completely unique FDPs are, however, found in specific groups of oxygenic photosynthetic organisms. FDPs found in cyanobacteria and some photosynthetic eukaryotes possess an extra C-terminal flavin reductase domain (Zhang et al., 2009). This particular domain composition theoretically allows NAD(P)H oxidation to be coupled with O2 reduction in the same enzyme.Synechocystis sp. PCC 6803 (hereafter Synechocystis), a widely used model organism among cyanobacteria in photosynthesis research, contains four FDPs encoded by the sll1521 (flv1), sll0219 (flv2), sll0550 (flv3), and sll0217 (flv4) genes. In vivo, Flv1 and Flv3 acquire electrons after PSI and deliver them further to molecular oxygen, reducing it to water. We have denominated this process as a Mehler-like reaction (Allahverdiyeva et al., 2013) because the excess of electrons is donated to O2, similarly to the genuine plant-type Mehler reaction, but there is no production of ROS in the FDP-mediated reaction (Helman et al., 2003). Up to 60% of the electrons produced by the oxygen splitting activity of PSII are redirected to Flv1- and Flv3-mediated Mehler-like reactions in severe inorganic carbon starvation conditions (Allahverdiyeva et al., 2011). Flv1 and Flv3 proteins form a very important electron sink that protects PSI against oxidative damage under fluctuating light conditions (Allahverdiyeva et al., 2013).Flv2 and Flv4 can be found only in cyanobacteria and they have been assigned a role in photoprotection of PSII (Zhang et al., 2009, 2012). PSII is historically known to be extremely vulnerable to oxidative damage upon illumination, with the severity of damage being dependent on light intensity and on the availability of electron acceptors. At air-level CO2 concentrations (low CO2 or LC) and/or high light (HL) irradiances, terminal acceptors are consistently limiting the electron flow, making PSII particularly sensitive to these conditions, widely exceeding the repair capacity of damaged PSII centers (Aro et al., 1993).Flv2 and Flv4 proteins are encoded in an operon including a small Sll0218 protein. Importantly, the flv4-2 operon is strongly induced in LC and HL conditions (Zhang et al., 2009). Flv4 and Flv2 proteins form a heterodimer that localizes in cytoplasm but also has a high affinity to membrane in the presence of cations (Zhang et al., 2012). Sll0218, the 19-kD protein encoded by the flv4-2 operon, locates in the thylakoid membrane and forms a high molecular mass complex in association with unknown partners. In the model proposed by Zhang et al. (2012), Sll0218 stabilizes PSII dimers and facilitates the opening of a novel electron transfer pathway through the Flv2/Flv4 heterodimer, which associates with the thylakoid membrane in light. The Flv2/Flv4 complex is also important for proper energy transfer from PBs to PSII as evidenced by a high emission peak at 685 nm in the 77K fluorescence spectra. This effect is caused by uncoupled PB terminal emitters, as deduced from detailed examination of the deconvoluted emission spectra (Zhang et al., 2012). This strongly suggested a distorted energy transfer from PB terminal emitters to the PSII reaction centers in flv4-2 operon deletion mutants. However, the photoprotection mechanism induced by the flv4-2 operon is not yet clearly understood. Here, with an overexpression approach, we provide evidence that Flv2/Flv4 acts as an important electron sink at the PSII acceptor side, allowing the maintenance of the plastoquinone (PQ) pool in an oxidized state and preventing the production of singlet oxygen in PSII. Furthermore, regular PBs are required for the Flv2/Flv4-related mechanism to be expressed. Genome mining of sequenced cyanobacteria strains provided evidence for the loss of the flv4-2 operon in the genomes of cyanobacteria that have acquired a stress-inducible D1 copy.  相似文献   

5.
6.
Photoinduced changes in the redox state of photosystem I (PSI) primary donor, chlorophyll P700 were studied by measuring differential absorbance changes of pea leaves at 810 nm minus 870 nm (ΔA 810). The kinetics of ΔA 810 induced by 5-s pulses of white light were strongly affected by preillumination. In dark-adapted leaves, the light pulse caused a transient oxidation of P700 and its subsequent reduction. An identical pulse, applied after 30-s preillumination with white light, induced sequential appearance of two peaks of P700 oxidation. These kinetic differences of ΔA 810 reflect regulatory changes of electron flow on the donor and acceptor sides of PSI induced by illumination of leaf for 20–40 s. The amplitude of ΔA 810 second peak depended nonmonotonically on the dark interval preceding illumination: it increased with the length of dark period in the range 3–10 s and decreased upon longer dark intervals. The second wave of ΔA 810 disappeared after the treatment with combination of ionophores preventing ΔpH and electric potential formation at the thylakoid membrane. In leaves treated with monensin eliminating ΔpH only, the ΔA 810 signals become incompletely reversible and were characterized by slow relaxation in darkness. The results indicate an important role of electrochemical proton gradient in generation of the second wave of light-induced P700 oxidation.  相似文献   

7.
In Synechocystis sp. PCC 6803, the flv4‐2 operon encodes the flavodiiron proteins Flv2 and Flv4 together with a small protein, Sll0218, providing photoprotection for Photosystem II (PSII). Here, the distinct roles of Flv2/Flv4 and Sll0218 were addressed, using a number of flv4‐2 operon mutants. In the ?sll0218 mutant, the presence of Flv2/Flv4 rescued PSII functionality as compared with ?sll0218‐flv2, where neither Sll0218 nor the Flv2/Flv4 heterodimer are expressed. Nevertheless, both the ?sll0218 and ?sll0218‐flv2 mutants demonstrated deficiency in accumulation of PSII proteins suggesting a role for Sll0218 in PSII stabilization, which was further supported by photoinhibition experiments. Moreover, the accumulation of PSII assembly intermediates occurred in Sll0218‐lacking mutants. The YFP‐tagged Sll0218 protein localized in a few spots per cell at the external side of the thylakoid membrane, and biochemical membrane fractionation revealed clear enrichment of Sll0218 in the PratA‐defined membranes, where the early biogenesis steps of PSII occur. Further, the characteristic antenna uncoupling feature of the ?flv4‐2 operon mutants is shown to be related to PSII destabilization in the absence of Sll0218. It is concluded that the Flv2/Flv4 heterodimer supports PSII functionality, while the Sll0218 protein assists PSII assembly and stabilization, including optimization of light harvesting.  相似文献   

8.
The effects of exogenous glucose on the rates of alternative pathways of photosystem II (PSII)-independent electron flow to PSI and of dark respiration in Synechocystis sp. 6803 cells were studied. The presence of glucose was shown to accelerate the electron flow to P700+, the PSI primary electron donor oxidized with Far-red light (FRL), which excites specifically only PSI. An increase in the glucose concentration was accompanied by a further activation of electron flow to PSI, which was supported by the dark donation of reducing equivalents to the electron transport chain. An increase in the external glucose concentration resulted also in the disappearance of lag-phase in the kinetics of P700+ reduction, which was observed in the cells incubated without glucose after FRL switching off. A similarity of nonphotochemical processes of electron transfer to PSI in cyanobacteria and higher plants was supposed, basing on the earlier observed fact of the occurrence of such lagphase in higher plants and its dependence on the exhausting of stromal reductants in the light. Acceleration of dark electron flow to PSI in the presence of glucose, a major respiratory substrate, may indicate the coupling between nonphotochemical processes in the photosynthetic and respiratory chains of electron transport in cyanobacterial cells. A close correlation between photosynthesis and respiration in cyanobacterial cells is also confirmed by a sharp acceleration of respiration with an increase in the glucose concentration in medium.  相似文献   

9.
O(2) photoreduction by photosynthetic electron transfer, the Mehler reaction, was observed in all groups of oxygenic photosynthetic organisms, but the electron transport chain mediating this reaction remains unidentified. We provide the first evidence for the involvement of A-type flavoproteins that reduce O(2) directly to water in vitro. Synechocystis sp. strain PCC 6803 mutants defective in flv1 and flv3, encoding A-type flavoproteins, failed to exhibit O(2) photoreduction but performed normal photosynthesis and respiration. We show that the light-enhanced O(2) uptake was not due to respiration or photorespiration. After dark acclimation, photooxidation of P(700) was severely depressed in mutants Deltaflv1 and Deltaflv3 but recovered after light activation of CO(2) fixation, which gives P(700) an additional electron acceptor. Inhibition of CO(2) fixation prevented recovery but scarcely affected P(700) oxidation in the wild-type, where the Mehler reaction provides an alternative route for electrons. We conclude that the source of electrons for O(2) photoreduction is PSI and that the highly conserved A-type flavoproteins Flv1 and Flv3 are essential for this process in vivo. We propose that in cyanobacteria, contrary to eukaryotes, the Mehler reaction produces no reactive oxygen species and may be evolutionarily related to the response of anaerobic bacteria to O(2).  相似文献   

10.
Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The ΔrbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between QA and QB, whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of ΔrbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 ‘dark rise’ in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in ΔrbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the ΔrbcL mutant under growth conditions. This protective capacity was rapidly exceeded in ΔrbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.  相似文献   

11.
Electron donation to P700+ through plastoquinone in the intersystemchain from both respiratory substrates and the photoreductantsin PSI has been shown to be mediated by the NAD(P)H-dehydrogenasecomplex (NDH) in Synechocystis PCC 6803 cells [Mi et al. (1992)Plant Cell Physiol. 33: 1233]. To confirm the participationof NDH in the cyclic electron flow around PSI, the redox kineticsof P700 and Chi fluorescence were analyzed in cells rendereddeficient in respiratory substrates by dark starvation and inspheroplasts. Dark-starved cells showed a high steady-state level of P700+under far-red (FR) illumination and the plastoquinone pool wasin a highly oxidized state. An NDH-defective mutant consistentlyshowed a high level of P700 oxidation under FR before and afterthe dark starvation. Donation of electrons either from exogenousNADPH or from photoreduced NADPH+ to the intersystem chain viaplastoquinone was demonstrated using spheroplasts from wild-typecells, but not those from the NDH-defective mutant, as monitoredby following changes in the kinetics of Chi fluorescence andthe redox state of P700. The electron flow to PSI via plastoquinone,mediated by NADPH, was sensitive to rotenone, Hg2+ ions and2-thenoyltrifluoroacetone, inhibitors of mitochondrial NDH andsuccinate dehydrogenase, but not to antimycin A. The pool sizeof electrons that can be donated to P700+ from the cytosol throughthe intersystem chain increased with increasing duration ofillumination time by actinic light and was sensitive to rotenonein both wild-type cells and spheroplasts, but no such resultswere obtained in the NDH-defective mutant of Synechocystis 6803.The results support our previous conclusion that NDH is a mediatorof both respiratory electron flow and cyclic electron flow aroundPSI to the intersystem chain in the cyanobacterium Synechocystis. (Received August 20, 1993; Accepted November 22, 1993)  相似文献   

12.
The origin of nonmonotonic changes in the redox state of P700, the primary electron donor of PSI, was investigated on predarkened barley (Hordeum vulgare L.) leaves exposed to far-red light. To accomplish this, the relaxation kinetics of absorbance changes at 830 nm, reflecting the dark reduction of P700+, were measured at different stages of the induction curve. The onset of far-red light resulted in rapid oxidation of P700, which was followed by its partial reduction and subsequent slow oxidation of P700 to a steady-state level. This steady-state level was usually attained within 10 s under far-red light. The relative contribution of the slow kinetic component of P700+ reduction decreased in parallel with the transient photoreduction of P700+ and increased upon a subsequent stage of P700 photooxidation. The contribution of the middle component to the dark reduction of P700+ increased monotonically with the length of far-red light irradiation. The relative amplitude of the fast component of P700+ reduction increased sharply during the first 3 s of irradiation and decreased upon longer light exposures. The rates of fast and slow components of dark reduction of P700+ remained constant upon illumination of dark-adapted leaves with far-red light for 1 s and longer periods. Thus, nonmonotonic changes in the redox state of P700 in barley leaves exposed to far-red light reflect variable contributions of few alternative electron transport pathways characterized by different rates of electron donation to PSI. The results show the principle possibility of switching-over between alternative pathways of PSI-related electron transfer within one complex of this photosystem. Such switching may occur irrespective of active operation or inhibition of ferredoxin-dependent electron transport.  相似文献   

13.

Background

To ensure reliable sources of energy and raw materials, the utilization of sustainable biomass has considerable advantages over petroleum-based energy sources. Photosynthetic algae have attracted attention as a third-generation feedstock for biofuel production, because algae cultivation does not directly compete with agricultural resources, including the requirement for productive land and fresh water. In particular, cyanobacteria are a promising biomass feedstock because of their high photosynthetic capability.

Results

In the present study, the expression of the flv3 gene, which encodes a flavodiiron protein involved in alternative electron flow (AEF) associated with NADPH-coupled O2 photoreduction in photosystem I, was enhanced in Synechocystis sp. PCC6803. Overexpression of flv3 improved cell growth with corresponding increases in O2 evolution, intracellular ATP level, and turnover of the Calvin cycle. The combination of in vivo13C-labeling of metabolites and metabolomic analysis confirmed that the photosynthetic carbon flow was enhanced in the flv3-overexpressing strain.

Conclusions

Overexpression of flv3 improved cell growth and glycogen production in the recombinant Synechocystis sp. PCC6803. Direct measurement of metabolic turnover provided conclusive evidence that CO2 incorporation is enhanced by the flv3 overexpression. Increase in O2 evolution and ATP accumulation indicates enhancement of the AEF. Overexpression of flv3 improves photosynthesis in the Synechocystis sp. PCC6803 by enhancement of the AEF.
  相似文献   

14.
The rate of PSI mediated cyclic electron transport was studied in wild type and mutant cells of Synechocystis sp. PCC 6803 deficient in NDH-1 (M55) or succinate dehydrogenase (SDH) that are responsible for the dark reduction of the plastoquinone pool. Kinetics of P700 photooxidation and P700+ dark reduction in the presence of 5·10−5 M 3-(3,4-dichlorophenyl)-1,1-dimethylurea have been registered as light induced absorbance changes at 810 nm resulting from illumination of cells with 730-nm actinic light for 1 sec. It is shown that in the absence of dehydrogenases the rate of dark reduction of P700+ in both mutants did not decrease but even increased in NDH-1-less mutant cells as compared with the rate in wild type cells. Dibromothymoquinone drastically reduced the rate of P700+ dark reduction both in wild type and in mutant cells. Thus, the cyclic electron transfer from ferredoxin through the plastoquinone pool to P700+, which is independent from dehydrogenases, takes place in all the types of cells. Preillumination of cells of wild type and both mutants for 30 min or anaerobic conditions resulted in delay of P700 photooxidation and acceleration of P700+ dark reduction, while the level of photosynthesis and respiration terminal acceptors (NAD(P)+ and oxygen) decreased. It appears that the rate of P700 photooxidation and P700+ dark reduction in cyclic electron transport in Synechocystis wild type and mutant cells is determined by the level of NADP+ and oxygen in stroma. A possible approach to evaluation of the levels of these acceptors in vivo is proposed, based on kinetic curve parameters of P700 photoconversions induced by 730-nm light with 1-sec duration.  相似文献   

15.
In cyanobacteria, photorespiratory 2-phosphoglycolate (2PG) metabolism is mediated by three different routes, including one route involving the glycine decarboxylase complex (Gcv). It has been suggested that, in addition to conversion of 2PG into non-toxic intermediates, this pathway is important for acclimation to high-light. The photoreduction of O2 (Mehler reaction), which is mediated by two flavoproteins Flv1 and Flv3 in cyanobacteria, dissipates excess reductants under high-light by the four electron-reduction of oxygen to water. Single and double mutants defective in these processes were constructed to investigate the relation between photorespiratory 2PG-metabolism and the photoreduction of O2 in the cyanobacterium Synechocystis sp. PCC 6803. The single mutants Δflv1, Δflv3, and ΔgcvT, as well as the double mutant Δflv1gcvT, were completely segregated but not the double mutant Δflv3gcvT, suggesting that the T-protein subunit of the Gcv (GcvT) and Flv3 proteins cooperate in an essential process. This assumption is supported by the following results: (1) The mutant Δflv3gcvT showed a considerable longer lag phase and sometimes bleached after shifts from slow (low light, air CO2) to rapid (standard light, 5% CO2) growing conditions. (2) Photoinhibition experiments indicated a decreased ability of the mutant Δflv3gcvT to cope with high-light. (3) Fluorescence measurements showed that the photosynthetic electron chain is reduced in this mutant. Our data suggest that the photorespiratory 2PG-metabolism and the photoreduction of O2, particularly that catalyzed by Flv3, cooperate during acclimation to high-light stress in cyanobacteria. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Barley (Hordeum vulgare L.) leaves were irradiated with far-red (FR) light of various intensities after different periods of dark adaptation in order to investigate activities of alternative electron transport pathways related to photosystem I (PSI). Photooxidation of P700, the primary electron donor of PSI, was saturated at FR light intensity of 0.15 μmol quanta/(m2 s). As the photon flux density was raised in this range, the slow and middle components in the kinetics of P700+ dark reduction increased, whereas the fast component remained indiscernible. The amplitudes of the slow and middle components diminished upon further increase of FR photon flux density in the range 0.15–0.35 μmol quanta/(m2 s) and remained constant at higher intensities. The fast component of P700+ reduction was only detected after FR irradiation with intensities above 0.15 μmol quanta/(m2 s); the light-response curve for this component was clearly sigmoid. In dark-adapted barley leaves, three stages were distinguished in the kinetics of P700 photooxidation, with the steady state for P700+ achieved within about 3 min. In leaves predarkened for a short time, the onset of FR irradiation produced a very rapid photooxidation of P700. As the duration of dark exposure was prolonged, the amplitude of the first peak in the kinetic curve of photoinduced P700 photooxidation was diminished and the time for attaining the steady-state oxidation level was shortened. After a brief dark adaptation of leaves, ferredoxin-dependent electron flow did not appreciably contributed to the kinetics of P700+ dark reduction, whereas the components related to electron donation from stromal reductants were strongly retarded. It is concluded that FR light irradiation, selectively exciting PSI, suffices to modulate activities of alternative electron transport routes; this modulation reflects the depletion of stromal reductants due to continuous efflux of electrons from PSI to oxygen under the action of FR light. __________ Translated from Fiziologiya Rastenii, Vol. 52, No. 6, 2005, pp. 805–813. Original Russian Text Copyright ? 2005 by Egorova, Drozdova, Bukhov.  相似文献   

17.
The phosphatidylglycerol deficient ΔpgsA mutant of Synechocystis PCC6803 provided a unique experimental system for investigating in vivo retailoring of exogenously added dioleoylphosphatidylglycerol in phosphatidylglycerol-depleted cells. Gas chromatographic analysis of fatty acid composition suggested that diacyl-phosphatidylglycerols were synthesized from the artificial synthetic precursor. The formation of new, retailored lipid species was confirmed by negative-ion electrospray ionization–Fourier-transform ion cyclotron resonance and ion trap tandem mass spectrometry. Various isomeric diacyl-phosphatidylglycerols were identified indicating transesterification of the exogenously added dioleoylphosphatidyl-glycerol at the sn-1 or sn-2 positions. Polyunsaturated fatty acids were incorporated selectively into the sn-1 position. Our experiments with Synechocystis PCC6803/ΔpgsA mutant cells demonstrated lipid remodeling in a prokaryotic photosynthetic bacterium. Our data suggest that the remodeling of diacylphosphatidylglycerol likely involves reactions catalyzed by phospholipase A1 and A2 or acyl-hydrolase, lysophosphatidylglycerol acyltransferase and acyl-lipid desaturases.  相似文献   

18.
We tested the hypothesis that inducing photosynthesis in cyanobacteria requires respiration. A mutant deficient in glycogen phosphorylase (?GlgP) was prepared in Synechocystis sp. PCC 6803 to suppress respiration. The accumulated glycogen in ΔGlgP was 250–450% of that accumulated in wild type (WT). The rate of dark respiration in ΔGlgP was 25% of that in WT. In the dark, P700+ reduction was suppressed in ΔGlgP, and the rate corresponded to that in (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone)-treated WT, supporting a lower respiration rate in ?GlgP. Photosynthetic O2-evolution rate reached a steady-state value much slower in ?GlgP than in WT. This retardation was solved by addition of d-glucose. Furthermore, we found that the contents of Calvin cycle intermediates in ?GlgP were lower than those in WT under dark conditions. These observations indicated that respiration provided the carbon source for regeneration of ribulose 1,5-bisphosphate in order to drive the rapid start of photosynthesis.  相似文献   

19.
20.
Roles of oxidative stress and photoinhibition in high light acclimation were studied using a regulatory mutant of the cyanobacterium Synechocystis sp. PCC 6803. The mutant strain ΔsigCDE contains the stress responsive SigB as the only functional group 2 σ factor. The ?sigCDE strain grew more slowly than the control strain in methyl-viologen-induced oxidative stress. Furthermore, a fluorescence dye detecting H2O2, hydroxyl and peroxyl radicals and peroxynitrite, produced a stronger signal in ?sigCDE than in the control strain, and immunological detection of carbonylated residues showed more protein oxidation in ?sigCDE than in the control strain. These results indicate that ?sigCDE suffers from oxidative stress in standard conditions. The oxidative stress may be explained by the findings that ?sigCDE had a low content of glutathione and low amount of Flv3 protein functioning in the Mehler-like reaction. Although ?sigCDE suffers from oxidative stress, up-regulation of photoprotective carotenoids and Flv4, Sll2018, Flv2 proteins protected PSII against light induced damage by quenching singlet oxygen more efficiently in ?sigCDE than in the control strain in visible and in UV-A/B light. However, in UV-C light singlet oxygen is not produced and PSII damage occurred similarly in the ?sigCDE and control strains. According to our results, resistance against the light-induced damage of PSII alone does not lead to high light tolerance of the cells, but in addition efficient protection against oxidative stress would be required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号