首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
In addition to its role in somatic cell development in the testis, our data have revealed a role for Fgf9 in XY germ cell survival. In Fgf9-null mice, germ cells in the XY gonad decline in numbers after 11.5 days post coitum (dpc), while germ cell numbers in XX gonads are unaffected. We present evidence that germ cells resident in the XY gonad become dependent on FGF9 signaling between 10.5 dpc and 11.5 dpc, and that FGF9 directly promotes XY gonocyte survival after 11.5 dpc, independently from Sertoli cell differentiation. Furthermore, XY Fgf9-null gonads undergo true male-to-female sex reversal as they initiate but fail to maintain the male pathway and subsequently express markers of ovarian differentiation (Fst and Bmp2). By 14.5 dpc, these gonads contain germ cells that enter meiosis synchronously with ovarian gonocytes. FGF9 is necessary for 11.5 dpc XY gonocyte survival and is the earliest reported factor with a sex-specific role in regulating germ cell survival.  相似文献   

4.
One of the earliest morphological changes during testicular differentiation is the establishment of an XY specific vasculature. The testis vascular system is derived from mesonephric endothelial cells that migrate into the gonad. In the XX gonad, mesonephric cell migration and testis vascular development are inhibited by WNT4 signaling. In Wnt4 mutant XX gonads, endothelial cells migrate from the mesonephros and form a male-like coelomic vessel. Interestingly, this process occurs in the absence of other obvious features of testis differentiation, suggesting that Wnt4 specifically inhibits XY vascular development. Consequently, the XX Wnt4 mutant mice presented an opportunity to focus a gene expression screen on the processes of mesonephric cell migration and testicular vascular development. We compared differences in gene expression between XY Wnt4+/+ and XX Wnt4+/+ gonads and between XX Wnt4+/+ and XX Wnt4+/+ gonads to identify sets of genes similarly upregulated in wildtype XY gonads and XX mutant gonads or upregulated in XX gonads as compared to XY gonads and XX mutant gonads. We show that several genes identified in the first set are expressed in vascular domains, and have predicted functions related to cell migration or vascular development. However, the expression patterns and known functions of other genes are not consistent with roles in these processes. This screen has identified candidates for regulation of sex specific vascular development, and has implicated a role for WNT4 signaling in the development of Sertoli and germ cell lineages not immediately obvious from previous phenotypic analyses.  相似文献   

5.
One of the earliest morphological changes during testicular differentiation is the establishment of an XY specific vasculature. The testis vascular system is derived from mesonephric endothelial cells that migrate into the gonad. In the XX gonad, mesonephric cell migration and testis vascular development are inhibited by WNT4 signaling. In Wnt4 mutant XX gonads, endothelial cells migrate from the mesonephros and form a male-like coelomic vessel. Interestingly, this process occurs in the absence of other obvious features of testis differentiation, suggesting that Wnt4 specifically inhibits XY vascular development. Consequently, the XX Wnt4 mutant mice presented an opportunity to focus a gene expression screen on the processes of mesonephric cell migration and testicular vascular development. We compared differences in gene expression between XY Wnt4+/+ and XX Wnt4+/+ gonads and between XX Wnt4-/- and XX Wnt4+/+ gonads to identify sets of genes similarly upregulated in wildtype XY gonads and XX mutant gonads or upregulated in XX gonads as compared to XY gonads and XX mutant gonads. We show that several genes identified in the first set are expressed in vascular domains, and have predicted functions related to cell migration or vascular development. However, the expression patterns and known functions of other genes are not consistent with roles in these processes. This screen has identified candidates for regulation of sex specific vascular development, and has implicated a role for WNT4 signaling in the development of Sertoli and germ cell lineages not immediately obvious from previous phenotypic analyses.  相似文献   

6.
Over the course of a few days, the bipotential embryonic mouse gonad differentiates into either a testis or an ovary. Though a few gene expression differences that underlie gonadal sex differentiation have been identified, additional components of the testicular and ovarian developmental pathways must be identified to understand this process. Here we report the use of a PCR-based cDNA subtraction to investigate expression differences that arise during gonadal sex differentiation. Subtraction of embryonic day 12.5 (E12.5) XY gonadal cDNA with E12.5 XX gonadal cDNA yielded 19 genes that are expressed at significantly higher levels in XY gonads. These genes display a variety of expression patterns within the embryonic testis and encode a broad range of proteins. A reciprocal subtraction (of E12.5 XX gonadal cDNA with E12.5 XY gonadal cDNA) yielded two genes, follistatin and Adamts19, that are expressed at higher levels in XX gonads. Follistatin is a well-known antagonist of TGFbeta family members while Adamts19 encodes a new member of the ADAMTS family of secreted metalloproteases.  相似文献   

7.
In the mouse, the sex determining gene Sry, on the Y chromosome, controls testis differentiation during embryogenesis. Following Sry expression, indifferent XY gonads increase their size relative to XX gonads and form cord-like structures with the adjacent mesonephros, providing XY gonad somatic cells. This mesonephric cell migration is known to depend on Sry, but the molecular mechanism of mesonephric cell migration remains unknown. In this study, it was shown that cells expressing Sry induced proliferation of mesonephric cells migrating into male gonads, and inhibited expression of the tissue inhibitor of metalloproteinases (TIMP)-3 gene, which is the endogenous inhibitor of matrix metalloproteinases (MMP). In addition, the mesonephric cell migration was blocked by a chemically synthesized inhibitor of MMP in a gonad/mesonephros organ co-culture system with enhanced green fluorescent protein transgenic embryos. The findings indicate that MMP may play a critical role in mesonephric cell migration, and the function of MMP may be regulated by a Sry-TIMP-3 cascade. These findings are an important clue for the elucidation of testicular formation in developing gonads.  相似文献   

8.
The phenotypic effects of a new recessive mutation mas −1, which in homozygous condition induces testicular development in XX animals of common carp ( Cyprinus carpio L.), are described. Sexual differentiation of XX; mas −+/ mas −1 and XX; mas −1/ mas −1 animals was compared with the gonad development of XX wild type females and XY males. In XX females gonadal differentiation starts with the formation of an ovarian cavity and entry into meiosis of germ cells at around 80 days post hatching (ph). Male gonads remain quiescent until 120 days ph during which period they develop a network of loose connective tissue. Spermatogenesis starts with tubule formation and the differentiation of germ cells into spermatogonia type B. Heterozygous XX; mas −+/ mas −1 animals developed as normal females, but in homozygous XX; mas −1/ mas −1 animals two types of gonad development were observed. In the first type, germ cells did not enter meiosis until 100 days ph when they differentiated as spermatogonia. An ovarian cavity was not formed but male specific connective tissue developed instead. These gonad developed as normal testes. In the second type, germ cells differentiated at 80 days ph as either oocytes or spermatocytes, which resulted in the gonads developing as ovotestes. The formation of an ovarian cavity was in most cases incomplete. The phenotypic effects of mas −1 are interpreted as a timing mismatch between mas activation and female sex differentiation.  相似文献   

9.
Summary On the basis of widespread phylogenetic conservatism, it has been propose'd that serologically-defined H-Y antigen is the inducer of primary sex differentiation in mammals, causing the initially indifferent gonad to become a testis rather than an ovary. The proposal has withstood extensive testing in a variety of biological circumstances: XX males have testes and are H-Y+ and fertile XY females lack testicular tissue and are H-Y; soluble H-Y antigen induces testicular organogenesis in XX indifferent gonads of the fetal calf in culture; H-Y antibody blocks tubular reaggregation of dispersed XY testicular cells, causing them to organize follicular clusters.There is a gonadal receptor for H-Y antigen: fetal ovarian cells that have been exposed to soluble H-Y (released for example by testicular Sertoli cells) take up the molecule and acquire the H-Y+ phenotype; they absorb H-Y antibody in serological tests. Specific uptake of soluble H-Y does not occur in the extra-gonadal tissues.It may be inferred that H-Y antigen is disseminated during embryogenesis and bound by specific receptors in cells of the primordial gonad, and that reaction of H-Y and its receptor signals a program of testicular differentiation, regardless of karyotype. The several anomalies of primary sexual differentiation manifest in such conditions as the XX male, the XX true hermaphrodite, and the XY female can thus reasonably be viewed as specific errors of synthesis, dissemination, and binding of H-Y antigen.H-Y is secreted by Daudi cells, cultured from a human XY Burkitt lymphoma. The Daudi-secreted moiety is a single hydrophobic protein of 18,000 molecular weight. Early attempts to characterize H-Y secreted by testicular Sertoli cells have yielded two molecules, one of 16,500 MW (corresponding to the Daudi-secreted 18,000 MW protein), and one of 31,000 MW. It remains to be ascertained whether both are in fact H-Y antigens, and if so, whether one is a polymer of the other, or whether each represents the product of genes with discrete testis-determining functions.  相似文献   

10.
We have established an enhanced green fluorescent protein (EGFP) transgenic medaka line that mimics the expression of sox9b/sox9a2 to analyze the morphological reorganization of the gonads and characterize the sox9b-expressing cells during gonadal formation in this fish. After the germ cells have migrated into the gonadal areas, a cluster of EGFP-expressing cells in the single gonadal primordium was found to be separated by the somatic cells along the rostrocaudal axis and form the bilateral lobes. We observed in these transgenic fish that EGFP expression persists only in the somatic cells directly surrounding the germ cells. As sex differentiation proceeds, dmrt1 and foxl2 begin to be expressed in the EGFP-expressing cells in the XY and the XX gonads, respectively. This indicates that the sox9b-expressing cells reorganize into two lobes of the gonad and then differentiate into Sertoli or granulosa cells, as common precursors of the supporting cells. Hence, our sox9b-EGFP medaka system will be useful in future studies of gonadal development.  相似文献   

11.
12.
S Ohno  Y Nagai  S Ciccarese  R Smith 《In vitro》1979,15(1):11-18
In a very strict sense, the primary (gonadal) sex of mammals is determined not so much by the presence or absence of the Y but the expression or nonexpression of the evolutionary extremely conserved plasma membrane H-Y antigen. The central somatic blastema of embryonic indifferent gonads contains one cell lineage characterized by the possession of S-F differentiation antigen that differentiates into testicular Sertoli cells in the presence of H-Y and into ovarian follicular (granulosa) cells in its absence. This cell lineage appears to play the most critical role in gonadal differentiation. Whether or not testicular Leydig cells and ovarian theca cells are similarly derived from the common cell lineage has not been determined. Nevertheless, if given H-Y antigen, presumptive theca-cell precursors of the fetal ovary acquire hCG (LH?)-receptors-the characteristic of fetal Leydig cells.  相似文献   

13.
Gonadal differentiation has a determinative influence on sex development in human embryos. Disorders of sexual development (DSD) have been associated with persistent embryonal differentiation stages. Between 1998 and 2015, 139 female patients with various (DSD) underwent operations at the Scientific Center of Obstetrics, Gynaecology and Perynatology in Moscow, Russia. Clinical investigations included karyotyping, ultrasound imaging, hormonal measurement and investigations of gonadal morphology. The male characteristics in the embryo are imposed by testicular hormones. When these are absent or inactive, the fetus may be arrested at between developmental stages, or stay on indifferent stage and become phenotypically female. A systematic analysis of gonadal morphology in DSD patients and a literature review revealed some controversies and led us to formulate a new hypothesis about sex differentiation. Proliferation of the mesonephric system (tubules and corpuscles) in the gonads stimulates the masculinization of gonads to testis. Sustentacular Sertoli cells of the testes are derived from mesonephric excretory tubules, while interstitial Leydig cells are derived from the original mesenchyme of the mesonephros. According of the new hypothesis, the original mesonephric cells (tubules and corpuscles) potentially persist in the ovarian parenchyma. In female gonads, some mesonephric excretory tubules regress and lose the tubular structure, but form ovarian theca interna and externa, becoming analogous to the sustentacular Sertoli cells in the testis. The ovarian interstitial Leydig cells are derived from intertubal mesenchyme of the mesonephros, similar to what occurs in male gonads (testis). Surprisingly, the leading determinative factor in sexual differentiation of the gonads is the mesonephros, represented by the embryonic urinary system.  相似文献   

14.
In order to investigate the function of gonadal somatic cells in the sex differentiation of germ cells, we produced chimera fish containing both male (XY) and female (XX) cells by means of cell transplantation between blastula embryos in the medaka, Oryzias latipes. Sexually mature chimera fish were obtained from all combinations of recipient and donor genotypes. Most chimeras developed according to the genetic sex of the recipients, whose cells are thought to be dominant in the gonads of chimeras. However, among XX/XY (recipient/donor) chimeras, we obtained three males that differentiated into the donor's sex. Genotyping of their progeny and of strain-specific DNA fragments in their testes showed that, although two of them produced progeny from only XX spermatogenic cells, their testes all contained XY cells. That is, in the two XX/XY chimeras, germ cells consisted of XX cells but testicular somatic cells contained both XX and XY cells, suggesting that the XY somatic cells induced sex reversal of the XX germ cells and the XX somatic cells. The histological examination of developing gonads of XX/XY chimera fry showed that XY donor cells affect the early sex differentiation of germ cells. These results suggest that XY somatic cells start to differentiate into male cells depending on their sex chromosome composition, and that, in the environment produced by XY somatic cells in the medaka, germ cells differentiate into male cells regardless of their sex chromosome composition.  相似文献   

15.
DMY is the second vertebrate sex-determining gene identified from the fish, Oryzias latipes. In this study, we used two different ways of sex reversal, DMY knock-down and estradiol-17beta (E2) treatment, to determine the possible function of DMY during early gonadal sex differentiation in XY medaka. Our findings revealed that the mitotic and meiotic activities of the germ cells in the 0 day after hatching (dah) DMY knock-down XY larvae were identical to those of the normal XX larvae, suggesting the microenvironment of these XY gonads to be similar to that of the normal XX gonad, where DMY is naturally absent. Conversely, E2 treatment failed to initiate mitosis in the XY gonad, possibly due to an active DMY, even though it could initiate meiosis. Present study is the first to prove that the germ cells in the XY gonad can resume the mitotic activity, if DMY was knocked down.  相似文献   

16.
In mammals a single gene on the Y chromosome, Sry, controls testis formation. One of the earliest effects of Sry expression is the induction of somatic cell migration from the mesonephros into the XY gonad. Here we show that mesonephric cells are required for cord formation and male-specific gene expression in XY gonads in a stage-specific manner. Culturing XX gonads with an XY gonad at their surface, as a 'sandwich', resulted in cell migration into the XX tissue. Analysis of sandwich gonads revealed that in the presence of migrating cells, XX gonads organized cord structures and acquired male-specific gene expression patterns. From these results, we conclude that mesonephric cell migration plays a critical role in the formation of testis cords and the differentiation of XY versus XX cell types.  相似文献   

17.
The rabbit is an attractive species for the study of gonad differentiation because of its 31-day long gestation, the timing of female meiosis around birth and the 15-day delay between gonadal switch and the onset of meiosis in the female. The expression of a series of genes was thus determined by qPCR during foetal life until adulthood, completed by a histological analysis and whenever possible by an immunohistological one. Interesting gene expression profiles were recorded. Firstly, the peak of SRY gene expression that is observed in early differentiated XY gonads in numerous mammals was also seen in the rabbit, but this expression was maintained at a high level until the end of puberty. Secondly, a peak of aromatase gene expression was observed at two-thirds of the gestation in XX gonads as in many other species except in the mouse. Thirdly, the expression of STRA8 and DMC1 genes (which are known to be specifically expressed in germ cells during meiosis) was enhanced in XX gonads around birth but also slightly and significantly in XY gonads at the same time, even though no meiosis occurs in XY gonad at this stage. This was probably a consequence of the synchronous strong NANOS2 gene expression in XY gonad. In conclusion, our data highlighted some rabbit-specific findings with respect to the gonad differentiation process.  相似文献   

18.
Sry induces cell proliferation in the mouse gonad   总被引:11,自引:0,他引:11  
Sry is the only gene on the Y chromosome that is required for testis formation in mammals. One of the earliest morphological changes that occurs as a result of Sry expression is a size increase of the rudimentary XY gonad relative to the XX gonad. Using 5'-bromo-2'-deoxyuridine (BrdU) incorporation to label dividing cells, we found that the size increase corresponds with a dramatic increase in somatic cell proliferation in XY gonads, which is not detected in XX gonads. This male-specific proliferation was observed initially in the cells of the coelomic epithelium and occurred in two distinct stages. During the first stage, proliferation in the XY gonad was observed largely in SF1-positive cells and contributed to the Sertoli cell population. During the second stage, proliferation was observed in SF1-negative cells at and below the coelomic epithelium and did not give rise to Sertoli cells. Both stages of proliferation were dependent on Sry and independent of any other genetic differences between male and female gonads, such as X chromosome dosage or other genes on the Y chromosome. The increase in cell proliferation began less than 24 hours after the onset of Sry expression, before the establishment of male-specific gene expression patterns, and before the appearance of any other known male-specific morphological changes in the XY gonad. Therefore, an increase in cell proliferation in the male coelomic epithelium is the earliest identified effect of Sry expression.  相似文献   

19.
Background: The gene Sry acts as a developmental switch, initiating a pathway of gene activity that leads to the differentiation of testis rather than ovary from the indifferent gonad (genital ridge) in mammalian embryos. The early events following Sry expression include rapid changes in the topographical organization of cells in the XY gonad. To investigate the contribution of mesonephric cells to this process, gonads from wild-type mice (CD1), and mesonephroi from a transgenic strain ubiquitously expressing β-galactosidase (ROSA26), were grafted together in vitro. After culture, organs were fixed and stained for β-galactosidase activity to identify cells contributed from the mesonephros to the male or female gonad.Results: Migration of mesonephric cells occurred into XY but not XX gonads from 11.5–16.5 days post coitum (dpc). Somatic cells contributed from the mesonephros were distinguished by their histological location and by available cell-specific markers. Some of the migrating cells were endothelial; a second population occupied positions circumscribing areas of condensing Sertoli cells; and a third population lay in close apposition to endothelial cells.Conclusions: Migration from the mesonephros to the gonad is male specific at this stage of development and depends on an active signal that requires the presence of a Y chromosome in the gonad. The signals that trigger migration operate over considerable distances and behave as chemoattractants. We suggest that migration of cells into the bipotential gonad may have a critical role in initiating the divergence of development towards the testis pathway.  相似文献   

20.
To clarify the importance of endogenous estrogens during sex differentiation in a teleost fish, the Nile tilapia, we examined the target events for endogenous estrogens and their role during gonadal sex differentiation. The expression of CYP19a (P450arom) precedes any morphological gonadal sex differentiation. Further to these findings, the treatment of XX fry with non-steroidal aromatase inhibitor (AI), Fadrozole, from seven to 14 days after hatching caused complete sex reversal to functional males. The XX sex reversal induced by AI was rescued completely with simultaneous estrogen treatment. We also found that XY fry treated with estrogen, before the appearance of morphological sex differences, caused complete sex reversal from males to females. Taken together, these results suggest that endogenous estrogens are required for ovarian differentiation. To identify the down-stream gene products of estrogen during ovarian differentiation, we performed subtractive hybridization using mRNA derived from normal and estrogen treated XY gonads. Two out of ten gene products were expressed in germ cells, whereas the others were expressed in somatic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号