首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor beta 1 is believed to be a key regulator of extravillous cytotrophoblast invasion during the first trimester of pregnancy. In addition, this growth factor has been shown to regulate cellular differentiation and fusion in cultured extravillous cytotrophoblasts. To date, the cellular mechanisms by which transforming growth factor beta 1 promotes these developmental processes remain poorly understood. Recent studies indicate that the expression of the novel cadherin subtype, known as cadherin-11, is associated with the terminal differentiation and fusion of villous cytotrophoblasts isolated from the human term placenta and human myoblasts in vitro. In this study, cadherin-11 mRNA and protein expression were examined in primary cultures of human extravillous cytotrophoblasts cultured in the presence of increasing concentrations of transforming growth factor beta 1 using northern and western blot analysis, respectively. Transforming growth factor beta 1 was shown to increase cadherin-11 mRNA and protein expression in these cultured extravillous cytotrophoblasts in a dose-dependent manner. Cadherin-11 was further localized to the large cellular aggregates and multinucleated cells that formed in response to increasing concentrations of transforming growth factor beta 1 using immunocytochemistry. Collectively, these observations suggest that the morphogenetic effects of transforming growth factor beta 1 on cultured extravillous cytotrophoblasts are mediated, at least in part, by an increase in cadherin-11 expression. This study not only adds to the understanding of the cellular mechanisms by which transforming growth factor beta 1 promotes trophoblast differentiation and fusion but provides useful insight into the cell biology of the cadherins.  相似文献   

2.
3.
4.
Trophoblasts, the fetal cells that line the villous placenta and separate maternal blood from fetal tissue, express both Fas antigen and the tumor necrosis factor (TNF) receptor p55 (TNFRp55), two members of the TNF receptor family that contain a cytoplasmic "death domain" that mediates apoptotic signals. We show that Fas mRNA expressed by cultured villous cytotrophoblasts isolated from term placentas encodes transmembrane sequences and that the protein is full-length (approximately 45 kDa), suggesting that the product is an active plasma membrane-anchored receptor. Its location on the cell surface was confirmed by cellular ELISA analysis of live cells. Although cytotrophoblast apoptosis was induced by TNFalpha, and both anti-Fas antibody (CH11) and FasL-expressing T lymphocyte hybridoma (activated A1.1) cells induced HeLa cell apoptosis, neither CH11 antibody nor activated A1.1 cells stimulated apoptosis in term or first-trimester cytotrophoblasts or in term syncytiotrophoblasts. We conclude that Fas- but not TNFRp55-mediated apoptosis is blocked in primary villous trophoblasts. These data suggest that the Fas response is specifically inactivated by unknown mechanisms to avoid autocrine or paracrine killing by Fas ligand constitutively expressed on neighboring cyto- or syncytiotrophoblasts.  相似文献   

5.
We examined the morphological features of the mitochondria and endoplasmic reticula of chorion laeve cytotrophoblasts from term human fetal membranes, and compared them with those of syncytiotrophoblasts and cytotrophoblasts from human placental villi. Ultrastructural enzyme histochemistry of cytochrome c oxidase and glucose-6-phosphatase were used as cytochemical markers for these intracellular organelles. Chorion laeve cytotrophoblasts possessed abundant endoplasmic reticula, and small mitochondria with a few cristae, which were characteristic of villous syncytiotrophoblasts rather than villous cytotrophoblasts. As for these organellar structures, statistical analysis confirmed similarities between chorion laeve cytotrophoblasts and villous syncytiotrophoblasts, but significant differences between laeve cytotrophoblasts and villous cytotrophoblasts. Though these two cytotrophoblasts originated from one common cell in early placental development, they exhibited quite different organellar morphology during placental/chorioamniotic differentiation. Considering previous data, we concluded that chorion laeve cytotrophoblasts were metabolically active cells, similar to villous syncytiotrophoblasts, performing many functions in fetal membrane physiology.  相似文献   

6.
Cultured human term villous cytotrophoblasts (CT) have been reported to be nonproliferating but differentiate when exposed to epidermal growth factor (EGF). Here we show that CT differentiate into chorionic gonadotropin (beta-hCG/CGB)-expressing cells when cultured with medium alone. The addition of EGF decreases CGB secretion and prolongs production for up to 13 days. EGF stimulates the phosphorylation (activation) of the signaling intermediate p38 (MAPK11/14), and blocking phosphorylation pharmacologically with either SB203580 or SB202190 strongly inhibited spontaneous and EGF-stimulated secretion of CGB. In addition, EGF-stimulated fusion of cytotrophoblasts into syncytial units was strongly inhibited by SB203580. EGF upregulated trophoblast proliferation (measured by bromodeoxyuridine uptake) and SB203580 increased this proliferation after 5 days. In agreement with these observations, EGF and SB203580 increased expression of the G1-phase-specific gene cyclin-D1 (CCND1) and SB203580 downmodulated its inhibitor p21 (CDKN1A). When added to villous explant cultures, EGF did nothing to the pattern of CGB secretion, but addition of SB203580 prevented the normal surge in secretion during syncytial regeneration over Days 3-7. These data support the hypothesis that EGF-stimulated cytotrophoblast differentiation to syncytium requires MAPK11/14 activation, and that cytotrophoblast proliferation can be stimulated in culture by EGF and enhanced by MAPK11/14 inhibition with a consequent reduction of differentiation.  相似文献   

7.
Epidermal growth factor (EGF) receptors were studied during the in vitro differentiation of human trophoblast cells from first- and third-trimester placentas. Cytotrophoblasts were isolated by enzymatic digestion and purified on a discontinuous Percoll gradient. As analyzed by flow cytometry, 5% of the cells are in the G2M phase in the early placenta and 0% in the term placenta. In culture, the cytotrophoblasts at both gestational ages flatten out, aggregate, and fuse together to form syncytiotrophoblasts. This in vitro morphological differentiation is associated with a threefold increase in the ability to bind specifically 125I-EGF. Trophoblastic cells from the term placenta have a significantly (p less than 0.005) higher receptor number (68.6 +/- 9.5 fmol/mg protein) for EGF after 2 days of culture than first-trimester cytotrophoblasts (35.8 +/- 2.3 fmol/mg protein). Scatchard plot analysis revealed two classes of binding sites with a similar affinity in both first-trimester and term placentas (9.5 x 10(9) M-1 for the high-affinity, 0.5 x 10(9) M-1 for the low affinity site). When 125I-EGF was affinity cross-linked to cytotrophoblasts, the receptors appeared as a specific band with a molecular weight of 180 kD in SDS-PAGE. This study demonstrates that the culture of cytotrophoblasts offer an appropriate model to study the modulation of EGF receptors.  相似文献   

8.
Human placental alkaline phosphatase (PLAP) was localized at the apical and basal plasma membrane of syncytiotrophoblasts and at the surface of cytotrophoblasts in term chorionic villi using immunoelectron microscopy. Similarly, apical and basolateral PLAP expression was found in polarized trophoblast-derived BeWo cells. Trophoblasts isolated from term placentas exhibited mainly vesicular PLAP immunofluorescence staining immediately after isolation. After in vitro differentiation into syncytia, PLAP plasma membrane expression was upregulated and exceeded that observed in mononuclear trophoblasts. These data call for caution in using PLAP as a morphological marker to differentiate syncytiotrophoblasts from cytotrophoblasts or as a marker enzyme for placental brush-border membranes. (J Histochem Cytochem 49:1155-1164, 2001)  相似文献   

9.
Human placental extracts contain a herapin-inhibitable lectin activity. The lectin, which closely resembles those from chicken and rat tissues, was purified by heparin-affinity chromatography. It shares many properties with the previously reported lectins, including hapten specificity, molecular weight of monomers, and immunological cross-reactivity. Sections from different stages of placental development, stained by immunohistochemistry procedures using lectin-specific antibody, showed that the lectin was initially present only in cytotrophoblasts of early first trimester villi. Later in the first trimester, both cytotrophoblasts and syncytiotrophoblasts were stained positively for lectin. From second trimester to term, the lectin was seen only in syncytiotrophoblasts.  相似文献   

10.
Immunohistochemical staining of human placenta revealed intense reactivity for amino terminal and midregional parathyroid-hormone-related protein (PTHrp) in the cytotrophoblast cells and weaker staining in the syncytiotrophoblasts. The cytotrophoblasts also displayed conspicuous surface staining with the monoclonal antibodies E11 and G11, which recognize a Ca2+ receptor mechanism regulating hormone release of parathyroid cells. Cytotrophoblasts enriched on Percoll gradients or by linking surface-bound E11 to magnetic beads revealed biphasic elevation of cytoplasmic Ca2+ ([Ca2+]i) upon a stepwise rise of external Ca2+ from 0.5 to 3.0 mM, with a half-maximal effect at 1.75 mM. Individual cytotrophoblasts identified by their E11 reactivity disclosed a temporary increase of [Ca2+]i upon elevation of external Mg2+, while Mn2+ triggered both a [Ca2+]i transient and an influx of itself. These effects were efficiently blocked by the G11 antibody. Depolarization with K+ or addition of the voltage-dependent Ca2+ channel blocker verapamil had only marginal effects on [Ca2+]i. Raised extracellular calcium inhibited release of PTHrp from the cells, and this inhibition was blocked by the G11 antibody. The virtually parathyroid-identical Ca2+ regulation of [Ca2+]i may mediate feedback control of PTHrp release from the cytotrophoblasts and thereby participate in the regulation of placental Ca2+ transport.  相似文献   

11.
A 1735 bp cDNA for human placental cytokeratin 8 is described which encompasses the entire coding sequence as well as 33 and 250 base pairs of 5'- and 3'-untranslated region, respectively. The level of cytokeratin 8 mRNA in various fetal tissues and placentae of different gestational ages was determined as were the effects of 8-bromo-cAMP on cytokeratin 8 mRNA in primary cultures of cytotrophoblasts and JEG-3 choriocarcinoma cells. Cytokeratin 8 mRNA was abundant in fetal small intestine, placenta, pancreas, lung, liver, and kidney. Levels of cytokeratin 8 mRNA in placenta increased slightly during pregnancy. 8-Bromo-cAMP suppressed cytokeratin 8 mRNA in primary cultures of cytotrophoblasts, whereas the cAMP analog increased mRNA levels in JEG-3 cells, revealing differential regulation of this mRNA in normal and transformed trophoblastic cells.  相似文献   

12.
Steroid sulfatase (STS, EC 3.1.6.2) catalyzes the hydrolysis of the sulfate ester bonds of a variety of sulfated steroids, such as cholesterol, dehydroepiandrosterone, and estrone sulfate, a reaction influencing fertility and breast cancer in mammals. The activity of the enzyme is substantially elevated in placental syncytiotrophoblasts and is lower in other somatic cells. The polypeptide sequence of the enzyme is encoded by a gene located on the distal short arm of the human X chromosome. Prior studies have shown that the STS gene escapes X-chromosome inactivation. We studied the expression of the STS gene in primary cultures of cytotrophoblasts from human term placentae and compared it with the expression of autosomally encoded placental alkaline phosphatase (PALP) and X-linked glucose-6-phosphate dehydrogenase (G6PD). During 90 h in culture, the mononucleated cytotrophoblast cells did not proliferate, but differentiated into multinucleated, syncytiotrophoblast-like cells. STS activity in freshly isolated cytotrophoblasts was low (about 17%), compared to placental tis- sue, and about 1.7-fold higher in female than in male cells. During cultivation, STS activity increased 2- to 3-fold in female, but not in male, cells. PALP activity was very low in freshly isolated cytotrophoblasts (about 5% of placental tissue), and no significant difference between female and male cells was detectable. Within 90 h in culture, PALP activity increased in all preparations about 2- to 4-fold. G6PD activity in freshly isolated cytotrophoblasts showed great variation among preparations, and no significant difference between female and male cells was detectable. In both male and female cells the activity declined to about 50% of initial activity during cultivation. We conclude that human cytotrophoblasts in primary culture show a sex-specific regulation of STS activity, perhaps as a unique feature of the STS gene. The cytotrophoblast system may offer a new possibility to study the regulation of STS gene expression.  相似文献   

13.
Fibulin-5 is a secreted extracellular matrix glycoprotein and displays a diverse panel of biological functions, which can be segregated into elastogenic as well as extra-elastogenic functions. While elastogenic functions of fibulin-5 include essential roles in early steps of elastic fibre assembly, extra-elastogenic functions are widespread. Depending on the cell type used, fibulin-5 mediates cell adherence via a subset of integrins, antagonizes angiogenesis and inhibits migration as well as proliferation of endothelial and smooth muscle cells. In this study, we focused on the spatiotemporal expression of fibulin-5 in the human placenta. With progressing gestation, placental fibulin-5 expression increased from first trimester towards term. At term, placental fibulin-5 mRNA expression is lower when compared with other well-vascularized organs such as lung, kidney, heart, uterus and testis. In first trimester, placenta immunohistochemistry localized fibulin-5 in villous cytotrophoblasts and extravillous cytotrophoblasts of the proximal cell column. In term placenta, fibulin-5 was detected in the endothelial basement membrane and adventitia-like regions of vessels in the chorionic plate and stem villi. Cell culture experiments with the villous trophoblast-derived cell line BeWo showed that fibulin-5 expression was downregulated during functional differentiation and intercellular fusion. Moreover, cultivation of BeWo cells under low oxygen conditions impaired intercellular fusion and upregulated fibulin-5 expression. The spatiotemporal shift from the trophoblast compartment in first trimester to the villous vasculature at term suggests a dual role of fibulin-5 in human placental development.  相似文献   

14.
15.
Human fetal development depends on the embryo rapidly gaining access to the maternal circulation. The trophoblast cells that form the fetal portion of the human placenta have solved this problem by transiently exhibiting certain tumor-like properties. Thus, during early pregnancy fetal cytotrophoblast cells invade the uterus and its arterial network. This process peaks during the twelfth week of pregnancy and declines rapidly thereafter, suggesting that the highly specialized, invasive behavior of the cytotrophoblast cells is closely regulated. Since little is known about the actual mechanisms involved, we developed an isolation procedure for cytotrophoblasts from placentas of different gestational ages to study their adhesive and invasive properties in vitro. Cytotrophoblasts isolated from first, second, and third trimester human placentas were plated on the basement membrane-like extracellular matrix produced by the PF HR9 teratocarcinoma cell line. Cells from all trimesters expressed the calcium-dependent cell adhesion molecule cell-CAM 120/80 (E-cadherin) which, in the placenta, is specific for cytotrophoblasts. However, only the first trimester cytotrophoblast cells degraded the matrices on which they were cultured, leaving large gaps in the basement membrane substrates and releasing low molecular mass 3H-labeled matrix components into the medium. No similar degradative activity was observed when second or third trimester cytotrophoblast cells, first trimester human placental fibroblasts, or the human choriocarcinoma cell lines BeWo and JAR were cultured on radiolabeled matrices. To begin to understand the biochemical basis of this degradative behavior, the substrate gel technique was used to analyze the cell-associated and secreted proteinase activities expressed by early, mid, and late gestation cytotrophoblasts. Several gelatin-degrading proteinases were uniquely expressed by early gestation, invasive cytotrophoblasts, and all these activities could be abolished by inhibitors of metalloproteinases. By early second trimester, the time when cytotrophoblast invasion rapidly diminishes in vivo, the proteinase pattern of the cytotrophoblasts was identical to that of term, noninvasive cells. These results are the first evidence suggesting that specialized, temporally regulated metalloproteinases are involved in trophoblast invasion of the uterus. Since the cytotrophoblasts from first trimester and later gestation placentas maintain for several days the temporally regulated degradative behavior displayed in vivo, the short-term cytotrophoblast outgrowth culture system described here should be useful in studying some of the early events in human placen  相似文献   

16.
Summary We have compared hormone production by early gestation and term human placental trophoblasts cultured in Ham's F10 medium containing 10% fetal bovine serum with that by cells cultured in serum-free HB102 medium. Mean daily production of progesterone on Days 3 to 7 was approximately 25% less by both early gestation and term cells cultured in HB102 as compared to Ham's F10, but production was maintained at a stable level for at least 7 d longer than the cells in Ham's. Estradiol production from 10−6 M dehydroepiandrosterone by both early gestation and term cells was comparable in both media. Human placental lactogen production on Days 3 to 7 was 40% less by cells cultured in HB102. Human chorionic gonadotropin (hCG) output by early gestation cells was also 50% less in HB102 but term cells in HB102 produced twice as much hCG as those in Ham's F10. 3B-Hydroxysteroid dehydrogenase (3BHSD) activity in early gestation and term cells and 11B-hydroxysteroid dehydrogenase (11BHSD) activity of early gestation cultures was comparable in the two media. 11BHSD activity was decreased in the term cultures, and this decrease was more marked in Ham's than in HB102. Sulfatase and aromatase activities in the early gestation cultures were comparable in both media; sulfatase activity was comparable and aromatase activity only 20% less in the term cells cultured in HB102. These results indicate that serum-free HB102 supports differential function of human trophoblast cells and is useful for studies of placental activity for as long as 14 d in culture.  相似文献   

17.
18.
19.
20.
人胎盘滋养层细胞培养与体外hCG释放的研究   总被引:5,自引:0,他引:5  
本研究的目的是了解细胞滋养层细胞和合胞体滋养层细胞体外分化和生物学特性。方法:采用酶消化和Percoll密度梯度离心法,对人足月胎盘细胞滋养层细胞进行分离、纯化和体外培养。采用放射免疫法(RIA)检测细胞培养上清液hCG含量的变化。结果:经分离和纯化的细胞滋养层细胞在体外培养中生长良好,通过细胞分裂和融合形成合胞体滋养层细胞,随着合胞体滋养层细胞的生长,细胞培养上清液中hCG含量显著升高。我们认为从胎盘中分离和纯化的细胞滋养层细胞在体外培养中可分化和融合形成合胞体滋养层细胞,体外hCG含量的增加与合胞体滋养层细胞生长有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号