首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of chemokine antagonism as a strategy to inhibit leukocyte trafficking into inflammatory sites requires identification of the dominant chemokines mediating recruitment. The chemokine(s) directing T cells into cardiac allografts during acute rejection remain(s) unidentified. The role of the CXC chemokines IFN-gamma inducible protein 10 (IP-10) and monokine induced by IFN-gamma (Mig) in acute rejection of A/J (H-2(a)) cardiac grafts by C57BL/6 (H-2(b)) recipients was tested. Intra-allograft expression of Mig was observed at day 2 posttransplant and increased to the time of rejection at day 7 posttransplant. IP-10 mRNA and protein production were 2.5- to 8-fold lower than Mig. Whereas allografts were rejected at day 7-9 in control recipients, treatment with rabbit antiserum to Mig, but not to IP-10, prolonged allograft survival up to day 19 posttransplant. At day 7 posttransplant, allografts from Mig antiserum-treated recipients had marked reduction in T cell infiltration. At the time of rejection in Mig antiserum-treated recipients (i.e., days 17-19), intra-allograft expression of macrophage-inflammatory protein-1alpha, -1beta, and their ligand CCR5 was high, whereas expression of CXCR3, the Mig receptor, was virtually absent. Mig was produced by the allograft endothelium as well as by recipient allograft-infiltrating macrophages and neutrophils, indicating the synergistic interactions between innate and adaptive immune compartments during acute rejection. Collectively, these results indicate that Mig is a dominant recruiting factor for alloantigen-primed T cells into cardiac allografts during acute rejection. Although Mig antagonism delays acute heart allograft rejection, the results also suggest that the alloimmune response circumvents Mig antagonism through alternative mechanisms.  相似文献   

2.
Direct evidence that cytokines with chemoattractant properties for leukocytes, chemokines, recruit alloantigen-primed T cells into transplanted allografts has been lacking. We present evidence that neutralization of a single chemokine inhibits T cell infiltration into class II MHC-disparate murine allografts and acute rejection. The chemokines IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma (Mig) are expressed in allogeneic skin grafts during the late stages of acute rejection. Survival of class II MHC-disparate B6.H-2bm12 allografts is prolonged from day 14 to day 55 posttransplant when C57BL/6 recipients are given a short course treatment with an antiserum to Mig. This treatment also inhibits T cell and macrophage infiltration into the allografts. B6.H-2bm12 allografts are also not rejected by IFN-gamma-/- C57BL/6 recipients. Injection of Mig directly into B6.H-2bm12 grafts on IFN-gamma-deficient recipients restores T cell infiltration and rejection. Therefore, the inability of IFN-gamma-deficient recipients to reject the class II MHC-disparate allografts is due to the lack of intraallograft Mig production and alloantigen-primed T cell recruitment to the graft. These results indicate for the first time the potential utility of chemokine neutralization strategies in preventing T cell infiltration into allografts and abrogating acute rejection.  相似文献   

3.
CXCR3 chemokines exert potent biological effects on both immune and vascular cells. The dual targets suggest their important roles in cardiac allograft vasculopathy (CAV) and rejection. Therefore, we investigated expression of IFN-inducible protein 10 (IP-10), IFN-inducible T cell alpha chemoattractant (I-TAC), monokine induced by IFN (Mig), and their receptor CXCR3 in consecutive endomyocardial biopsies (n = 133) from human cardiac allografts and corresponding normal donor hearts (n = 11) before transplantation. Allografts, but not normal hearts, contained IP-10, Mig, and I-TAC mRNA. Persistent elevation of IP-10 and I-TAC was associated with CAV. Allografts with CAV had an IP-10-GAPDH ratio 3.7 +/- 0.8 compared with 0.8 +/- 0.2 in those without CAV (p = 0.004). Similarly, I-TAC mRNA levels were persistently elevated in allografts with CAV (6.7 +/- 1.9 in allografts with vs 1.5 +/- 0.3 in those without CAV, p = 0.01). In contrast, Mig mRNA was induced only during rejection (2.4 +/- 0.9 with vs 0.6 +/- 0.2 without rejection, p = 0.015). In addition, IP-10 mRNA increased above baseline during rejection (4.1 +/- 2.3 in rejecting vs 1.8 +/- 1.2 in nonrejecting biopsies, p = 0.038). I-TAC did not defer significantly with rejection. CXCR3 mRNA persistently elevated after cardiac transplantation. Double immunohistochemistry revealed differential cellular distribution of CXCR3 chemokines. Intragraft vascular cells expressed high levels of IP-10 and I-TAC, while Mig localized predominantly in infiltrating macrophages. CXCR3 was localized in vascular and infiltrating cells. CXCR3 chemokines are induced in cardiac allografts and differentially associated with CAV and rejection. Differential cellular distribution of these chemokines in allografts indicates their central roles in multiple pathways involving CAV and rejection. This chemokine pathway may serve as a monitor and target for novel therapies to prevent CAV and rejection.  相似文献   

4.
The identification of early inflammatory events after transplant in solid tissue organ grafts that may direct T cell recruitment and promote acute allograft rejection remain largely unknown. To better understand temporal aspects of early inflammatory events in vascularized organ grafts, we tested the intragraft expression of four different chemokines in heterotopically transplanted A/J (H-2(a)) and syngeneic heart grafts in C57BL/6 (H-2(b)) recipient mice from 1.5 to 48 h after transplant. Similar temporal expression patterns and equivalent levels of chemokine expression were observed in both syngeneic and allogeneic cardiac allografts during this time period. Expression of the neutrophil chemoattractant growth-related oncogene alpha (KC) was observed first and reached peak levels by 6 h after transplant and was followed by the monocyte/macrophage chemoattractant protein-1 (JE) and then macrophage inflammatory proteins 1beta and 1alpha. Administration of rabbit KC antiserum to allograft recipients within 30 min of cardiac transplantation attenuated downstream events including intra-allograft expression of the T cell chemoattractants IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma, cellular infiltration into the allograft, and graft rejection. Similarly, depletion of recipient neutrophils at the time of transplantation significantly extended allograft survival from day 8 to 10 in control-treated recipients up to day 21 after transplant. These results indicate the induction of highly organized cascades of neutrophil and macrophage chemoattractants in cardiac grafts and support the proposal that early inflammatory events are required for optimal recruitment of T cells into allografts during the progression of acute rejection of cardiac allografts.  相似文献   

5.
The immunosuppressant Protosappanin A (PrA), isolated from the medicinal herb, promotes cardiac allograft survival, diminishes inflammatory cell infiltration, and inhibits interferon γ-induced protein 10 kDa (IP-10) mRNA expression in rats cardiac grafts. Binding of the chemokine IP-10 to its cognate receptor, CXCR3, plays crucial roles in allograft immunity, especially by mediating the recruitment of effector T cells to allografted tissues. In this study, we attempted to determine whether PrA-mediated inhibition of IP-10 contributes to the effect of reduced T cell infiltration into cardiac allograft within a rat model. Administration of PrA (25 mg/kg daily) via oral gavage following heart transplantation significantly reduced the increase of IP-10 mRNA level in allograft and prevented IP-10 secretion by peripheral blood mononuclear cells (PBMC) isolated from recipient rats seven days posttransplantation. Furthermore, in vitro experiments demonstrated that PrA addition to control PBMC prevented IP-10 secretion. Chemotactic migration assays were utilized to evaluate recipient T cell migration towards PBMC supernatant. PrA administration impaired PBMC supernatant-induced T cell migration. Additional in vitro experiments revealed that PrA slightly reduced naïve T cell migration towards chemokines. The presence of IP-10 in PBMC supernatant prevented PrA from reducing T cell migration in PrA-treated recipients. Neither CXCR3 chemokine ligand Mig nor non-CXCR3 chemokine ligand SDF-1 had any effect on T cell migration in PrA-treated recipients. The addition of anti-CXCR3 antibody restored PrA-mediated inhibition of T cell migration. Immunofluorescence microscopy showed that IP-10 was expressed mainly in CD68 positive infiltrating monocytes. Furthermore, PrA consistently reduced CXCR3+T cell infiltration into cardiac allografts. The reduced intensity of CXCR3 staining in PrA-treated allografts contributed to the previously depressed naïve T cell migrating activity induced by PrA. Collectively, these data indicate that PrA inhibition of IP-10 activity reduced recipient T cell migration and infiltration of cardiac allografts, thus partially explaining the immunosuppressive effect of PrA.  相似文献   

6.
IL-15 is a T cell growth factor that shares many functional similarities with IL-2 and has recently been shown to be present in tissue and organ allografts, leading to speculation that IL-15 may contribute to graft rejection. Here, we report on the in vivo use of an IL-15 antagonist, a soluble fragment of the murine IL-15R alpha-chain, to investigate the contribution of IL-15 to the rejection of fully vascularized cardiac allografts in a mouse experimental model. Administration of soluble fragment of the murine IL-15R alpha-chain (sIL-15Ralpha) to CBA/Ca (H-2k) recipients for 10 days completely prevented rejection of minor histocompatibility complex-mismatched B10.BR (H-2k) heart grafts (median survival time (MST) of >100 days vs MST of 10 days for control recipients) and led to a state of donor-specific immunologic tolerance. Treatment of CBA/Ca recipients with sIL-15Ralpha alone had only a modest effect on the survival of fully MHC-mismatched BALB/c (H-2d) heart grafts. However, administration of sIL-15Ralpha together with a single dose of a nondepleting anti-CD4 mAb (YTS 177.9) delayed mononuclear cell infiltration of the grafts and markedly prolonged graft survival (MST of 60 days vs MST of 20 days for treatment with anti-CD4 alone). Prolonged graft survival was accompanied in vitro by reduced proliferation and IFN-gamma production by spleen cells, whereas CTL and alloantibody levels were similar to those in animals given anti-CD4 mAb alone. These findings demonstrate that IL-15 plays an important role in the rejection of a vascularized organ allograft and that antagonists to IL-15 may be of therapeutic value in preventing allograft rejection.  相似文献   

7.
8.
Background: Ligands for CXCR3 chemokines [IFN-γ-inducible protein of 10 kD (IP-10/CXCL10), monokine induced by IFN-γ (Mig/CXCL9), IFN-inducible T cell α chemoattractant (I-TAC/CXCL11)] and those for CCR4 [macrophage-derived chemokine (MDC/CCL22), thymus- and activation-regulated chemokine (TARC/CCL17)] have been shown to play the central roles for T helper-cell recruitment into the tissues. To examine the role of these chemokines in tumor progression of lung cancer, we investigated their expression in human lung cancer tissues to determine the possible relationship between their expression and the prognosis of patients. Methods: Total RNA was prepared from lung cancer tissues of 40 patients (24 adenocarcinoma and 16 squamous cell carcinoma). We measured gene expression levels of chemokines (IP-10, Mig, I-TAC, MDC and TARC) by real-time quantitative RT-PCR. Results: Higher gene expression of MDC in lung cancer was significantly correlated with longer disease-free survival time and lower risk of recurrence after tumor resection. We could not find any significant relationship of IP-10, Mig, I-TAC and TARC gene expression with disease-free survival or lower risk of recurrence after surgery. Conclusions: These results suggest that increased gene expression of MDC in tumor tissues may be a predictive marker for improving the prognosis of lung cancer.Toru Nakanishi and Kazuyoshi Imaizumi equally contributed to this work.  相似文献   

9.
Chemokines have a pivotal role in the mobilization and activation of specific leukocyte subsets in acute allograft rejection. However, the role of specific chemokines and chemokine receptors in islet allograft rejection has not been fully elucidated. We now show that islet allograft rejection is associated with a steady increase in intragraft expression of the chemokines CCL8 (monocyte chemoattractant protein-2), CCL9 (monocyte chemoattractant protein-5), CCL5 (RANTES), CXCL-10 (IFN-gamma-inducible protein-10), and CXCL9 (monokine induced by IFN-gamma) and their corresponding chemokine receptors CCR2, CCR5, CCR1, and CXCR3. Because CCR2 was found to be highly induced, we tested the specific role of CCR2 in islet allograft rejection by transplanting fully MHC mismatched islets from BALB/c mice into C57BL/6 wild-type (WT) and CCR2-deficient mice (CCR2-/-). A significant prolongation of islet allograft survival was noted in CCR2-/- recipients, with median survival time of 24 and 12 days for CCR2-/- and WT recipients, respectively (p < 0.0001). This was associated with reduction in the generation of CD8+, but not CD4+ effector alloreactive T cells (CD62L(low)CD44(high)) in CCR2-/- compared with WT recipients. In addition, CCR2-/- recipients had a reduced Th1 and increased Th2 alloresponse in the periphery (by ELISPOT analysis) as well as in the grafts (by RT-PCR). However, these changes were only transient in CCR2-/- recipients that ultimately rejected their grafts. Furthermore, in contrast to the islet transplants, CCR2 deficiency offered only marginal prolongation of heart allograft survival. This study demonstrates the important role for CCR2 in early islet allograft rejection and highlights the tissue specificity of the chemokine/chemokine receptor system in vivo in regulating allograft rejection.  相似文献   

10.
CXCR3, known to have four ligands (IFN-gamma inducible protein 10 (gamma IP-10), monokine induced by IFN-gamma (Mig), I-TAC, and 6Ckine), is predominantly expressed on memory/activated T lymphocytes. We recently reported that GM-CSF induces CXCR3 expression on CD34(+) hemopoietic progenitors, in which gamma IP-10 and Mig induce chemotaxis and adhesion. Here we further report that stimulation with GM-CSF causes phosphorylation of Syk protein kinase, but neither Casitas B-lineage lymphoma (Cbl) nor Cbl-b in CD34(+) hemopoietic progenitors can be blocked by anti-CD116 mAb. Specific Syk blocking generated by PNA antisense completely inhibits GM-CSF-induced CXCR3 expression in CD34(+) progenitors at both mRNA and protein as well as at functional levels (chemotaxis and adhesion). Cbl and Cbl-b blocking have no such effects. Thus, GM-CSF binds to its receptor CD116, and consequently activates Syk phosphorylation, which leads to induce CXCR3 expression. gamma IP-10 and Mig can induce Syk, Cbl, and Cbl-b phosphorylation in CD34(+) progenitors by means of CXCR3. gamma IP-10 or Mig has induced neither chemotaxis nor adhesion in GM-CSF-stimulated Cbl-b-blocked CD34(+) hemopoietic progenitors, whereas SDF-1alpha induces both chemotaxis and adhesion in these cells. Interestingly, gamma IP-10 and Mig can induce chemotaxis and adhesion in GM-CSF-stimulated Syk- or Cbl-blocked CD34(+) hemopoietic progenitors. Thus, Cbl-b, but not Syk and Cbl phosphorylation, is essential for gamma IP-10- and Mig-induced chemotaxis and adhesion in CD34(+) hemopoietic progenitors. This study provides a useful insight into novel signaling transduction pathways of the functions of CXCR3/gamma IP-10 and Mig, which may be especially important in the cytokine/chemokine environment for mobilization, homing, and recruitment during proliferation, differentiation, and maturation of hemopoietic progenitor cells.  相似文献   

11.
Chemokines play a critical role in the acute transplant rejection. In order to provide an overview of the chemokine expression during the course of acute allograft rejection, the intragraft expression profile of 11 chemokines representative of all four chemokine subfamilies was analyzed in a murine skin transplantation model of acute rejection. It was found that RANTES/CCL5, TARC/CCL17 and FKN/CX3CL1 were expressed at equivalent levels in iso- and allografts. However, the other eight chemokines expression was up-regulated to some extent in allograft compared with that in isograft. The levels of MIP-1α/CCL3, MIP-3α/CCL20 and CTACK/CCL27 were progressively increased from early stage (day 3 post-transplantation) to late stage (day 11). Mig/CXCL9, IP-10/CXCL10, I-TAC/CXCL11, CXCL16 and LTN/XCL1 expression was elevated at middle stage (day 7), and peaked at late stage. Among the up-regulated chemokines, I-TAC was the most obviously elevated chemokine. Therefore, the effect of I-TAC on the skin acute allograft rejection was evaluated. Block of I-TAC by the intradermal injection of anti-I-TAC monoclonal antibody (mAb) reduced the number of CXCR3+ cells in skin allograft and significantly prolonged the skin allograft survival. The mAb treatment did not influence the proliferation of the intragraft infiltrating cells in response to the allogeneic antigens, but significantly decreased the number of the infiltrating cells and consequently lowered the secretion of IFN-γ and TNF-α. These data indicate I-TAC might be a dominant chemokine involved in the intradermal infiltration and I-TAC-targeted intervening strategies would have potential application for the alleviation of acute transplant rejection.  相似文献   

12.
To investigate the role of neutrophils in experimental cerebral malaria (ECM), in a previous study we found that early neutrophil depletion prevented the development of ECM and down regulated the expression of Th1 cytokines in the brain. To further clarify the mechanisms responsible for these findings, in the present study, using RT-PCR, we examined the expression of cytokine and chemokine mRNAs in neutrophils and macrophages after PbA infection. We found that, after infection, neutrophils not only expressed cytokines IL-2, IL-12p40, IL-18, IFN-gamma and TNF-alpha mRNAs, but also mRNAs for Th1 chemoattractive chemokines, monokine-induced by IFN-gamma (MIG), macrophage-inflammatory protein-1alpha (MIP-1alpha) and IFN-gamma inducible protein-10 (IP-10). Neutrophil depletion down regulated the expression of IL-18 and MIG mRNAs in macrophages, but did not affect the expression of IFN-gamma, TNF-alpha, MIP-1alpha and IP-10 mRNAs. Therefore, this study confirms our hypothesis that neutrophils may play a role in the pathogenesis of ECM via their expression of cytokines or chemokines.  相似文献   

13.
Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear hormone receptor superfamily originally shown to play an important role in adipocyte differentiation and glucose homeostasis, is now known to regulate inflammatory responses. Given the importance of endothelial cell (EC)-derived chemokines in regulating leukocyte function and trafficking, we studied the effects of PPARgamma ligands on the expression of chemokines induced in ECs by the Th1 cytokine IFN-gamma. Treatment of ECs with PPARgamma activators significantly inhibited IFN-gamma-induced mRNA and protein expression of the CXC chemokines IFN-inducible protein of 10 kDa (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha-chemoattractant (I-TAC), whereas expression of the CC chemokine monocyte chemoattractant protein-1 was not altered. PPARgamma activators decreased IFN-inducible protein of 10 kDa promoter activity and inhibited protein binding to the two NF-kappaB sites but not to the IFN-stimulated response element ISRE site. Furthermore, PPARgamma ligands inhibited the release of chemotactic activity for CXC chemokine receptor 3 (CXCR3)-transfected lymphocytes from IFN-gamma-stimulated ECs. These data suggest that anti-diabetic PPARgamma activators might attenuate the recruitment of activated T cells at sites of Th1-mediated inflammation.  相似文献   

14.
Melioidosis is a disease of the tropics caused by the facultative intracellular bacterium Burkholderia pseudomallei. In human infection, increased levels of IFN-gamma in addition to the chemokines interferon-gamma-inducible protein 10 (IP-10) and monocyte interferon-gamma-inducible protein (Mig) have been demonstrated. However, the role of these and other chemokines in the pathogenesis of melioidosis remains unknown. Using BALB/c and C57BL/6 mice as models of the acute and chronic forms of human melioidosis, the induction of mRNA was assessed for various chemokines and CSF (G-CSF, M-CSF, GM-CSF, IP-10, Mig, RANTES, MCP-1, KC and MIP-2) in spleen and liver following B. pseudomallei infection. Patterns of chemokine and CSF induction were similar in liver and spleen; however, responses were typically greater in spleen, which reflected higher tissue bacterial loads. In BALB/c mice, high-level expression of mRNA for all chemokines and CSF investigated was demonstrated at day 3 postinfection, correlating with peak bacterial load and extensive infiltration of leucocytes. In contrast, increased mRNA expression and bacterial numbers in C57BL/6 mice were greatest between 4 and 14 days following infection. This paralleled increases in the size and number of abscesses in liver and spleen of C57BL/6 mice at days 3 and 14 postinfection. Earlier induction of cytokine-induced neutrophil chemoattractant (KC), macrophage inflammatory protein-2 (MIP-2), monocyte chemoattractant protein-1 (MCP-1), granulocyte-macrophage CSF (GM-CSF) and macrophage CSF (M-CSF) mRNA was demonstrated in spleen, while MIP-2, MCP-1, IP-10 and Mig were demonstrated in liver of BALB/c mice when compared to spleen and liver of C57BL/6. The magnitude of cellular responses observed in the tissue correlated with increased levels of the chemokines and CSF investigated, as well as bacterial load. Compared with C57BL/6 mice, greater infiltration of neutrophils was observed in liver and spleen of BALB/c mice at day 3. In contrast, early lesions in C57BL/6 mice predominantly comprised macrophages. These results suggest that the inability of BALB/c mice to contain the infection at sites of inflammation may underlie the susceptible phenotype of this mouse strain towards B. pseudomallei infection.  相似文献   

15.
Using a heterotopic model of transplantation, we investigated the role of T cell activation in vivo during allograft rejection in I-kappaB(DeltaN)-transgenic mice that express a transdominant inhibitor of NF-kappaB in T cells. Our results show indefinite prolongation of graft survival in the I-kappaB(DeltaN)-transgenic recipients. Interestingly, at the time of rejection of grafts in wild-type recipients, histology of grafts in the I-kappaB(DeltaN)-transgenic recipients showed moderate rejection; nevertheless, grafts in the I-kappaB(DeltaN) recipients survived >100 days. Analysis of acute phase cytokines, chemokine, chemokine receptors, and immune responses shows that the blockade of NF-kappaB activation in T cells inhibits up-regulation of many of these parameters. Interestingly, our data also suggest that the T cell component of the immune response exerted positive feedback regulation on the expression of multiple chemokines that are produced predominantly by non-T cells. In conclusion, our studies indicate NF-kappaB activation in T cells is necessary for acute allograft rejection.  相似文献   

16.
Idiopathic pneumonia syndrome (IPS) is a frequently fatal complication after allogeneic stem cell transplantation (allo-SCT) that responds poorly to standard immunosuppressive therapy. The pathophysiology of IPS involves the secretion of inflammatory cytokines including IFN-gamma and TNF-alpha along with the recruitment of donor T cells to the lung. CXCR3 is a chemokine receptor that is expressed on activated Th1/Tc1 T cell subsets and the expression of its ligands CXCL9 (monokine induced by IFN-gamma (Mig)) and CXCL10 (IFN-gamma-inducible protein 10 (IP-10)) can be induced in a variety of cell types by IFN-gamma alone or in combination with TNF-alpha. We used a lethally irradiated murine SCT model (B6 --> bm1) to evaluate the role of CXCR3 receptor:ligand interactions in the development of IPS. We found that Mig and IP-10 protein levels were significantly elevated in the bronchoalveolar lavage fluid of allo-SCT recipients compared with syngeneic controls and correlated with the infiltration of IFN-gamma-secreting CXCR3(+) donor T cells into the lung. The in vivo neutralization of either Mig or IP-10 significantly reduced the severity of IPS compared with control-treated animals, and an additive effect was observed when both ligands were blocked simultaneously. Complementary experiments using CXCR3(-/-) mice as SCT donors also resulted in a significant decrease in IPS. These data demonstrate that interactions involving CXCR3 and its primary ligands Mig and IP-10 significantly contribute to donor T cell recruitment to the lung after allo-SCT. Therefore, approaches focusing on the abrogation of these interactions may prove successful in preventing or treating lung injury that occurs in this setting.  相似文献   

17.
IL-4 enhances keratinocyte expression of CXCR3 agonistic chemokines   总被引:6,自引:0,他引:6  
IFN-induced protein of 10 kDa (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha-chemoattractant (I-TAC) belong to the non-glutamate-leucine-arginine motif CXC chemokine family and act solely through the CXCR3 receptor for potent attraction of T lymphocytes. In this study, we evaluated the capacity of the T cell-derived cytokines IL-4, IL-10, and IL-17 to modulate IP-10, Mig, and I-TAC in cultured human keratinocytes and CXCR3 expression in T cells from allergic contact dermatitis (ACD). IL-4, but not IL-10 or IL-17, significantly up-regulated IFN-gamma- or TNF-alpha-induced IP-10, Mig, and I-TAC mRNA accumulation in keratinocytes and increased the levels of IP-10 and Mig in keratinocyte supernatants. Immunohistochemistry of skin affected by ACD revealed that >70% of infiltrating cells were reactive for CXCR3 and that CXCR3 staining colocalized in CD4+ and CD8+ T cells. Nickel-specific CD4+ and CD8+ T cell lines established from ACD skin produced IFN-gamma and IL-4 and expressed moderate to high levels of CXCR3. Finally, CXCR3 agonistic chemokines released by stimulated keratinocytes triggered calcium mobilization in skin-derived nickel-specific CD4+ T cells and promoted their migration, with supernatant from keratinocyte cultures stimulated with IFN-gamma and IL-4 attracting more efficaciously than supernatant from keratinocytes activated with IFN-gamma alone. In conclusion, IL-4 exerts a proinflammatory function on keratinocytes by potentiating IFN-gamma and TNF-alpha induction of IP-10, Mig, and I-TAC, which in turn may determine a prominent recruitment of CXCR3+ T lymphocytes at inflammatory reaction sites.  相似文献   

18.
Bronchiolitis obliterans syndrome (BOS) is the major limitation to survival post-lung transplantation and is characterized by a persistent peribronchiolar inflammation that eventually gives way to airway fibrosis/obliteration. Acute rejection is the main risk factor for the development of BOS and is characterized by a perivascular/bronchiolar leukocyte infiltration. The specific mechanism(s) by which these leukocytes are recruited have not been elucidated. The CXC chemokines (monokine induced by IFN-gamma (MIG)/CXC chemokine ligand (CXCL)9, IP-10/CXCL10, and IFN-inducible T cell alpha chemoattractant (ITAC)/CXCL11) act through their shared receptor, CXCR3. Because they are potent leukocyte chemoattractants and are involved in other inflammation/fibroproliferative diseases, we hypothesized that the expression of these chemokines during an allogeneic response promotes the persistent recruitment of mononuclear cells, leading to chronic lung rejection. We found that elevated levels of MIG/CXCL9, IFN-inducible protein 10 (IP-10)/CXCL10, and ITAC/CXCL11 in human bronchoalveolar lavage fluid were associated with the continuum from acute to chronic rejection. Translational studies in a murine model demonstrated increased expression of MIG/CXCL9, IP-10/CXCL10, and ITAC/CXCL11 paralleling the recruitment of CXCR3-expressing mononuclear cells. In vivo neutralization of CXCR3 or its ligands MIG/CXCL9 and IP-10/CXCL10 decreased intragraft recruitment of CXCR3-expressing mononuclear cells and attenuated BOS. This supports the notion that ligand/CXCR3 biology plays an important role in the recruitment of mononuclear cells, a pivotal event in the pathogenesis of BOS.  相似文献   

19.
TNF-alpha and lymphotoxin (LT)alpha have been shown to be important mediators of allograft rejection. TNF-R1 is the principal receptor for both molecules. Mice with targeted genetic deletions of TNF-R1 demonstrate normal development of T and B lymphocytes but exhibit functional defects in immune responses. However, the role of TNF-R1-mediated signaling in solid organ transplant rejection has not been defined. To investigate this question, we performed vascularized heterotopic allogeneic cardiac transplants in TNF-R1-deficient (TNF-R1(-/-)) and wild-type mice. Because all allografts in our protocol expressed TNF-R1, direct antigraft effects of TNF-alpha and LTalpha were not prevented. However, immunoregulatory effects on recipient inflammatory cells by TNF-R1 engagement was eliminated in TNF-R1(-/-) recipients. In our study, cardiac allograft survival was significantly prolonged in TNF-R1(-/-) recipients. Despite this prolonged allograft survival, we detected increased levels of CD8 T cell markers in allografts from TNF-R1(-/-) recipients, suggesting that effector functions, but not T cell recruitment, were blocked. We also demonstrated the inhibition of multiple chemokines and cytokines in allografts from TNF-R1(-/-) recipients including RANTES, IFN-inducible protein-10, lymphotactin, and IL-1R antagonist, as well as altered levels of chemokine receptors. We correlated gene expression with the physiologic process of allograft rejection using self-organizing maps and identified distinct patterns of gene expression in allografts from TNF-R1(-/-) recipients. These findings indicate that in our experimental system TNF-alpha and LTalpha exert profound immunoregulatory effects through TNF-R1.  相似文献   

20.
Recruitment of activated T cells to mucosal surfaces, such as the airway epithelium, is important in host defense and for the development of inflammatory diseases at these sites. We therefore asked whether the CXC chemokines IFN-induced protein of 10 kDa (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha-chemoattractant (I-TAC), which specifically chemoattract activated T cells by signaling through the chemokine receptor CXCR3, were inducible in respiratory epithelial cells. The effects of proinflammatory cytokines, including IFN-gamma (Th1-type cytokine), Th2-type cytokines (IL-4, IL-10, and IL-13), and dexamethasone were studied in normal human bronchial epithelial cells (NHBEC) and in two human respiratory epithelial cell lines, A549 and BEAS-2B. We found that IFN-gamma, but not TNF-alpha or IL-1 beta, strongly induced IP-10, Mig, and I-TAC mRNA accumulation mainly in NHBEC and that TNF-alpha and IL-1 beta synergized with IFN-gamma induction in all three cell types. High levels of IP-10 protein (> 800 ng/ml) were detected in supernatants of IFN-gamma/TNF-alpha-stimulated NHBEC. Neither dexamethasone nor Th2 cytokines modulated IP-10, Mig, or I-TAC expression. Since IFN-gamma is up-regulated in tuberculosis (TB), using in situ hybridization we studied the expression of IP-10 in the airways of TB patients and found that IP-10 mRNA was expressed in the bronchial epithelium. In addition, IP-10-positive cells obtained by bronchoalveolar lavage were significantly increased in TB patients compared with normal controls. These results show that activated bronchial epithelium is an important source of IP-10, Mig, and I-TAC, which may, in pulmonary diseases such as TB (in which IFN-gamma is highly expressed) play an important role in the recruitment of activated T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号