首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the evergreen leaves of Quercus suber, stomata play a major role in adaptation to drought and temperature stress. The leaf is of zygostomic type and has about 430 stomata per square milimeter of abaxial leaf surface. The stomatal complex is of the anomocytic type. The guard cells protrude from the epidermal plane. The guard cell nucleus contains heterochromatin in small granules. The guard cell cytoplasm is characterised by a large number of well developed mitochondria, amyloplasts with stroma and grana, and a well developed cytoskeleton with a cortical array of microtubules oriented pa railed to the slit axis that persist even in mature cells. Guard cell walls are asymmetrically thickened and devoid of plasmodesmata. No area of cell walls was free of cuticle or covered by a thin cuticular layer and apparently no area of limited cuticular development provides evaporation when the stomata are closed.  相似文献   

2.
Cuticle micromorphology of 34 taxa of Pinus from Mexico and Central America was studied with scanning electron microscopy, and leaf morphology was described. In total, 29 characters, 22 from the inner cuticular surfaces and seven from the outer, were described in detail. These characters have value either for testing infragenerie classifications or for identifying individual taxa. Characters relating to the periclinal wall texture of the epidermal cells, the shape and degree of development of the anticlinal walls of the epidermal cells, the basal and apical shapes of anticlinal epidermal cell walls, the continuity of the epidermal cells, the size ratio of the polar to lateral subsidiary cells, the grooves on subsidiary cells, the cuticular flanges between guard and subsidiary cells, the groove near the bristles and the elevation of the Florin ring ridge and striations on the Florin ring are particularly useful for infrageneric classification. The agreement between these characters and infrageneric classifications is discussed. Characters relating to the end wall shapes of the epidermal cells, the relative length of epidermal cells, the shape of the stomatal apparatus, the texture of guard and lateral subsidiary cell surfaces, the polar extensions, the number of subsidiary cells and epidermal cell layers between stomatal rows, the integrity of stomatal rows, cell numbers between stomata in a row, cuticular flanges between guard cells, bristle flanges and surface textures, epicuticular waxes, striations on Florin rings and stomatal shapes, contain some important information for identifying Mexican pines. The distribution of the states of each character is compared with that of the Asian pines. Cuticular characters are used to help determine the affinities of taxonomically difficult taxa.  相似文献   

3.
Plant response to atmospheric humidity   总被引:15,自引:5,他引:10  
Abstract. Plants growing in environments differing in prevailing humidity exhibit variations in traits associated with regulation of water loss, particularly cuticular and stomatal properties. Expansive growth is also typically reduced by low humidity. Nevertheless, there is little evidence in plants for a specific sensor for humidity, analogous to the blue light or phytochrome photoreceptors. The detailed mechanism of the stomatal response to humidity remains unknown. Available data suggest mediation by fluxes of water vapour, with evaporation rate assuming the role of sensor. This implies that stomata respond to the driving force for diffusional water loss, leaf-air vapour pressure difference. Induction of metabolic stomatal response to humidity may involve signal metabolites, such as abscisic acid, that are present in the transpiration stream. These materials may accumulate in the vicinity of guard cells according to the magnitude and location of cuticular transpiration, both of which could change with humidity. Such a mechanism remains hypothetical, but is suggested to account for feedforward responses in which transpiration decreases with increasing evaporative demand, and for the apparent insensitivity of stomatal aperture in isolated epidermis to epidermal water status. Other responses of plants to humidity may involve similar indirect response mechanisms, in the absence of specific humidity sensors.  相似文献   

4.
Abstract Stomatal responses to humidity as affected by both evaporation from the epidermis and the hydraulic conductance of the transpiration stream to evaporation sites on the epidermis are discussed.
Recent estimates of evaporation from the inner walls of the epidermis are too high because the cell wall surfaces were assumed completely wet, and leaves have usually been considered isothermal.
It is suggested that a fall in humidity increases evaporation from the epidermis, and that stomata respond to the consequent fall in water potential. Cuticular transiration is inversely related to stomatal conductance. Thus, evaporation from the epidermis is dependent on the stomatal, boundary layer, and cuticular conductances, and on evaporation from the inner walls of the epidermis. Stomatal responses to humidity will change as the boundary layer conductance changes.
The conductance of the transpiration stream is a determinant of the water potential of the epidermis. Water potentials of adjacent cells will be more similar if flow is symplastic than if it is apoplastic. It is concluded that flow in living tissues is primarily symplastic over long distances, but over shorter distances it is increasingly apoplastic, and that stomatal responses to humidity are mediated by the water potential of the whole epidermis.  相似文献   

5.
Abstract. Cuticular resistance to water vapour diffusion is an important aspect of thermocouple psychrometry and may introduce significant error in the measurement of leaf water potential (Ψ). The effect of the citrus (Citrus mitis Blanco) leaf cuticle on water vapour movement was studied using the times required for vapour pressure equilibration during thermocouple psychrometric measurement of Ψ. Cuticular abrasion with various carborundum powders was used to reduce the diffusive resistance of both the adaxial and abaxial leaf surfaces, and the extent of the disruption to the leaf was investigated with light and electron microscopy. Cuticular abrasion resulted in reduced equilibration times due to decreased cuticular resistance and greater water vapour movement between the leaf and the psychrometer chamber. Equilibration times were reduced from over 5 h in the unabraded control leaves to 1 h with cuticle abrasion. This was associated with the decrease in diffusive resistance with cuticular abrasion from over 55 s cm?1 to less than 8 s cm?1 for both the adaxial and abaxial leaf surfaces. Scanning electron micrographs of the abraded leaf tissue revealed considerable disruption of the stomatal ledge and of the guard cells, surface smoothing and displacement of waxes into the stomatal aperture, and damage to veins. Observations with the transmission electron microscope revealed frequent disruption of epidermal cell walls, and damage to both the cytoplasmic and vacuolar membranes.  相似文献   

6.
Summary Two free-space marker procedures (Prussian blue and lanthanum nitrate) were employed to determine the pathway(s) followed by water and solutes in the transpiration stream after their introduction into the xylem of small and intermediate bundles, and the effectiveness of the suberin lamellae of the bundle-sheath cells as a barrier to the movement of tracer ions (Fe3+ and La3+). Judged from the distribution of Prussian-blue crystals (insoluble, crystalline deposits resulting from the precipitation of ferric ions by ferrocyanide anions) and lanthanum deposits, water and the tracer ions moved readily from the lumina of the vessels into the apoplast (cell wall continuum) of the phloem and bundle-sheath cells via portions of vessel primary walls not bearing lignified secondary wall thickenings. Prussian blue and lanthanum deposits were abundant on the bundlesheath cell side of the bundle sheath/mesophyll interface but few occurred on that of the mesophyll, indicating that the suberin lamella is an effective barrier to apoplastic movement of both ferric and lanthanum ions. The presence of Prussian-blue crystals and lanthanum deposits in the compound middle lamella of the radial wall of the bundle-sheath cells indicates that the compound middle lamella provides an apoplastic pathway for transpirational water from the xylem to the evaporating surfaces of the mesophyll and epidermal cells.  相似文献   

7.
Stomatal Response to Humidity and Lanthanum   总被引:1,自引:0,他引:1  
Lanthanum fed to the base of excised leaves of Sesamum indicum L. and Helianthus annuus L. was used as a tracer to investigate by electron microscopy the path of water in the apoplast of leaves. The generally random distribution of lanthanum in cell walls provided no support for the hypothesis that cuticular transpiration may be greater for guard cells than for adjacent epidermal cells. Occasionally, accumulations of lanthanum were observed in anticlinal walls of epidermal cells and at the outer surface of the plasma membrane but lanthanum was not observed in the symplast. The influx of 86Rb to excised roots of sesame and sunflower was inhibited during incubation with 0.5 mM lanthanum or calcium for 15 or for 180 min. Stomata of sunflower partially closed when 2.5 mM lanthanum was supplied to the base of excised shoots in a potometer, whereas this treatment had little effect on stomatal conductance of sesame shoots maintained in a constant environment. Supplying 2.5 mM lanthanum to the base of sesame shoots strongly inhibited stomatal opening response to increase in ambient humidity but had little effect on stomatal opening response to light. It was concluded that stomatal opening response to increased humidity may be dependent upon some process, such as ion influx, that is inhibited by lanthanum, and that opening response to humidity may differ in mechanism from stomatal opening response to increased irradiance.  相似文献   

8.
A computer was used to carry out numerical iterations of thediffusion pattern of water vapour in models of sub-stomatalcavities. The cavities were simple hemispheres and cylindershaving uniformly wet interior surfaces. In the simulations waterwas allowed to diffuse from the vapour saturated wet surfacesto a single hole which simulated a stoma. After many simulationswe concluded that about of all water evaporation occurs inthe region corresponding to the guard cells. We think that alarge degree of peri-stomatal evaporation will occur in realsub-stomatal cavities. We have reviewed some of the literature on liquid pathways andresistances in leaves and conclude that the resistance to waterflow from veins to the nearest guard cell is large enough tocause substantial localized dehydration of the guard cell resultingin hydroactive stomatal closure. We also suggest that: (1) theuse of apoplastic dyes to trace the pathway of water movementin leaves cannot give the correct answer; (2) the reported conductivityof epidermal tissue to water is impossibly high; and (3) previousgravimetric measurements of peristomatal evaporation on largescale models of sub-stomatal cavities were subject to waterloss by convection and therefore underestimated the degree ofperistomatal evaporation. We also argue that all wet interfaces take up CO2 more or lessuniformly even though evaporation of water is mostly peristomatal.The ramified internal structure of leaves therefore allows CO2uptake with relatively little water loss. stomata, sub-stomatal cavities, transpiration, peristomatal evaporation  相似文献   

9.
The function and location of guard cells uniquely subject them to stress. First, stomatal movements require large fluctuations in the concentration of potassium salts. Second, guard cell inner walls are the first surfaces exposed to evaporation and apoplastic solutes may accumulate there as a result. We have therefore investigated whether guard cells exhibit atypical expression of dehydrin genes because dehydrins accumulate in vegetative tissues in response to water stress. We have also assayed for osmotin mRNA, which is up-regulated in leaves in response to various stresses. mRNA probes for several representative genes were used with RNA extracts from control and water-stressed Vicia faba leaflets. Correlatively, these probes were used with RNA extracts from "isolated' guard cells that had been incubated with combinations of abscisic acid, mannitol and Ca2+. (Isolated guard cells are epidermal strips sonicated to destroy cells other than guard cells.) Hybridization with the probe prepared for a dehydrin from Pisum sativum (Psdhn 1) was detected in leaf extracts only if the leaf had been stressed. Similarly, after 1- and 6-h incubations with abscisic acid, isolated guard cells contained an mRNA that hybridized with the probe for Psdhn 1. Appearance of this abscisic acid-dependent mRNA required neither mannitol nor exogenous Ca2+. Regardless of the conditions or tissue, no hybridization was detected with the probe against osmotin, but our interpretation of this result is qualified. The simplest conclusion is that atypical expression of dehydrin is not the mechanism by which guard cells cope with their peculiar function and location.  相似文献   

10.
Water Vapour and Heat Transfer in Leaves   总被引:2,自引:0,他引:2  
SHERIFF  D. W. 《Annals of botany》1979,43(2):157-171
Factors connected with the formation of water droplets in leavesby distillation from the mesophyll to the epidermis were investigatedin a number of species. It was concluded that in illuminatedleaves water droplets form principally on the inner walls ofguard and subsidiary cells, and sometimes below the anticlinalwalls of epidermal cells, because these sites are cooler thanthe rest of the leaf. Under more isothermal conditions any waterdroplets that had formed disappeared. With increasing waterstress water droplets did not form so readily, though distillationwas occurring. Few water droplets were observed in leaves outof doors that had open stomata. Significant temperature gradientswere measured across leaves with thermocouples, but these werelarger than were gradients calculated from measured thermalconductivities of leaves. The evaporation resistances of theinner walls of the epidermis and of the mesophyll were foundto be similar. This led to the conclusion that the hydrophobicityof the surfaces of these tissues is similar. Water transferin leaves in the vapour phase was found to be more responsiveto temperature than to water stress gradients. leaf, evaporation, distillation, heat loss, transpiration  相似文献   

11.
Water in the transpiration stream is distributed throughoutthe leaves in the vascular bundles. In wheat, water appearsto be confined to the main veins by the mestome sheath and toenter the mesophyll through the walls of the smaller veins.Within the mesophyll the water in the transpiration stream movesin the free space of the cell walls to the evaporating surfacesof the leaf. The lead chelate, which is used to trace the transpirationstream, accumulates at the final points of evaporation at themargin of the leaf. Lead chelate accumulates beneath and onthe surface of the cuticle, being partly associated with theanticlinal walls of the epidermal cells, the walls of the stomatalguard cells and specialized epidermal cells. Chelate does notaccumulate at the base of substomatal cavities, indicating thatthe cuticle of the epidermis is the main evaporating surfaceof the leaf. The behaviour in broad bean, laurel, and plantainis essentially the same. The rate of peristomatal and cuticulartranspiration is closely related to the size of the stomatalaperture. Conditions which control stomatal aperture also causechanges in the dimensions of the epidermal cells.  相似文献   

12.
The composition of guard cell walls in sugar beet leaves (Beta vulgaris L.) was studied by using histochemical staining and immunocytochemical detection of cell wall antigens. The findings were compared with those in the walls of epidermal and mesophyll cells. Probing of leaf sections with monoclonal antibodies against pectins, terminal fucosyl residues linked alpha-(1-->2) to galactose, beta-(1-->3)-glucans and arabinogalactan-proteins revealed several specific features of guard cells. Pectic epitopes recognized by JIM7 were homogeneously distributed in the wall, whereas pectins recognized by JIM5 were not found in the walls themselves, but were abundant in the cuticular layer. Large amounts of molecules bearing terminal fucose were located predominantly in ventral and lateral guard cell walls. Much smaller amounts were detected in dorsal walls of these cells, as well as in the walls of pavement and mesophyll cells. Conspicuous accumulation of these compounds was observed in the vicinity of the guard cell plasmalemma, whereas labelling was scarce in the areas of the wall adjacent to the cell surface. The presence of callose clearly marked the ventral wall between the recently formed, very young guard cells. Callose also appeared in some mature walls, where it was seen as punctate deposits that probably reflected a specific physiological state of the guard cells. Large amounts of arabinogalactan-proteins were deposited within the cuticle, and smaller amounts of these proteoglycans were also detected in other tissues of the leaf. The histochemical and immunocytochemical structure of the guard cell wall is discussed in the light of its multiple functions, most of which involve changes in cell size and shape.  相似文献   

13.
Water Supply, Evaporation, and Vapour Diffusion in Leaves   总被引:12,自引:1,他引:11  
On the basis of experimental results published during the last25 years, but more particularly during the last 5 years andincluding some results presented here, the hypothesis is proposedthat an important portion of the water supply from major veinsin leaves travels within the epidermal tissue to sites of evaporationclose to the stomatal pores. These evaporation sites are innerepidermal walls especially subsidiary and guard cell walls becausethese are closest to air spaces with the highest water vapourdeficits. Less water than is traditionally supposed evaporatesfrom mesophyll cell walls. Low osmotic potentials of guard cells(large negative) are not required in building up high turgorpressures. However, they are required in competing for wateragainst the process of evaporation which causes low matric potentialsto develop in subsidiary and guard cell walls so that guardcolls can maintain the comparatively low turgor pressures whichhave been shown to operate the stomatal apparatus. Traditionalviews about leaf water relations and methods of estimating mesophyllresistances for carbon dioxide diffusion into leaves must bemodified.  相似文献   

14.
Evaporation of water from the guard cell wall concentrates apoplastic solutes. We hypothesize that this phenomenon provides two mechanisms for responding to high transpiration rates. First, apoplastic abscisic acid is concentrated in the guard cell wall. Second, by accumulating in the guard cell wall, apoplastic sucrose (Suc) provides a direct osmotic feedback to guard cells. As a means of testing this second hypothesized mechanism, the guard cell Suc contents at a higher transpiration rate (60% relative humidity [RH]) were compared with those at a lower transpiration rate (90% RH) in broad bean (Vicia faba), an apoplastic phloem loader. In control plants (constant 60% RH), the guard cell apoplast Suc content increased from 97 +/- 81 femtomol (fmol) guard cell pair(-1) to 701 +/- 142 fmol guard cell pair(-1) between daybreak and midday. This increase is equivalent to approximately 150 mM external, which is sufficient to decrease stomatal aperture size. In plants that were shifted to 90% RH before daybreak, the guard cell apoplast Suc content did not increase during the day. In accordance, in plants that were shifted to 90% RH at midday, the guard cell apoplast Suc content declined to the daybreak value. Under all conditions, the guard cell symplast Suc content increased during the photoperiod, but the guard cell symplast Suc content was higher (836 +/- 33 fmol guard cell pair(-1)) in plants that were shifted to 90% RH. These results indicate that a high transpiration rate may result in a high guard cell apoplast Suc concentration, which diminishes stomatal aperture size.  相似文献   

15.
The role of peristomatal transpiration in the mechanism of stomatal movement   总被引:12,自引:4,他引:8  
Abstract. Peristomatal transpiration is defined as the relative high local rate of cuticular water loss from external and internal surfaces around the stomatal pore and its decisive role in the control of stomatal movement is re-emphasized. As the resistance towards changes in air humidity is low in the pore surroundings, the state of turgor is particularly unsteady there. Due to the inherent instability the guard cell 'senses' fluctuations in the supply-demand relationship of water and is thus the control unit proper. The environmental variables (supply and demand) are cross-correlated within the subsidiary cell and the information is transmitted to the guard cell through the water potential gradient between the two cells. A conceptual segregation of a 'humidity response' by 'passive' stomatal movements is rejected.
As ions always accumulate at the most distant point of the liquid path and as this point varies with pore width according to the prevailing water potential gradients, it is felt that the water stream is causing the characteristic pattern of ion distribution within the epidermis. Passive import of ions is attributed to local concentration gradients which are steepened by continuous supply and by water uptake into the guard cell in response to starch hydrolysis. A mechanistic model supplements the discussion.  相似文献   

16.
中国桑寄生科植物叶表皮微形态   总被引:1,自引:1,他引:0  
韩荣兰  张奠湘  郝刚  胡晓颖 《广西植物》2004,24(5):426-i005
通过扫描电镜对中国桑寄生科桑寄生亚科8属18种和槲寄生亚科1属2种植物成熟叶的上、下叶表皮内表面和下表皮外表面进行了研究。内面观发现桑寄生科植物叶上、下表皮形状为多边形,垂周壁式样平直或稍弓形,常具有角质增厚,平周壁常覆盖厚角质或颗粒状、丝状角质增厚;气孔存在于上下表皮,通常下表皮较多,气孔的形状,特别是保卫细胞的形态在亚科间、属间或种间都具有一定的差异,气孔器类型为平列型或单圈型。下表皮表面观察了的角质膜和蜡质纹饰、气孔的形状,外部气孔缘及外部气孔缘内缘的特征。这些特征在亚科或属级水平上较为稳定,有的也表现出种间差异,有一定的分类价值。从气孔形态和外部气孔周围角质膜来看,两亚科显示出明显的不同:桑寄生亚科上、下表皮均具有内部气孔缘,而槲寄生亚科没有此结构;桑寄生亚科外部气孔周围角质膜增厚成环状,其上具增厚的条纹,而槲寄生亚科外部气孔周围角质膜增厚成脊状,不具条纹。这些特征支持槲寄生亚科作为独立1个科来处理。  相似文献   

17.
Transmission electron micrographs revealed that a substantialpart of the guard cell wall of both Quercus robur L. and Populusnigra ‘italica’ L. was either free of cuticle orcovered with a greatly reduced cuticular layer. In Quercus thestructure of the guard cell was such that the area of limitedcuticular development would be exposed to the evaporating powerof the atmosphere even when the stomata were closed. Lanthanumstaining confirmed that this area might be an important siteof evaporation. A similar evaporation site was identified inthe guard cell wall of Pinus sylvestris L. Light micrographsrevealed that this area could also be exposed on the outsideof the leaf when the stomata were closed. It appears that guardcell orientation with respect to the epidermal plane dependsupon epidermal turgor. Changes in orientation of the guard cellcoupled with the exact location of the cuticle-free area inthe guard cell wall may explain the nature of the stomatal responseof individual species to changing VPD and the effect of othervariables, e.g. water deficit, on this response. Quercus robur L, oak, Populus nigra L, poplar, stomata, guard cells, cuticle, evaporation, vapour pressure difference  相似文献   

18.
A model of stomatal conductance was developed to relate plant transpiration rate to photosynthetic active radiation (PAR), vapour pressure deficit and soil water potential. Parameters of the model include sensitivity of osmotic potential of guard cells to photosynthetic active radiation, elastic modulus of guard cell structure, soil‐to‐leaf conductance and osmotic potential of guard cells at zero PAR. The model was applied to field observations on three functional types that include 11 species in subtropical southern China. Non‐linear statistical regression was used to obtain parameters of the model. The result indicated that the model was capable of predicting stomatal conductance of all the 11 species and three functional types under wide ranges of environmental conditions. Major conclusions included that coniferous trees and shrubs were more tolerant for and resistant to soil water stress than broad‐leaf trees due to their lower osmotic potential, lignified guard cell walls, and sunken and suspended guard cell structure under subsidiary epidermal cells. Mid‐day depression in transpiration and photosynthesis of pines may be explained by decreased stomatal conductance under a large vapour pressure deficit. Stomatal conductance of pine trees was more strongly affected by vapour pressure deficit than that of other species because of their small soil‐to‐leaf conductance, which is explainable in terms of xylem tracheids in conifer trees. Tracheids transport water by means of small pit‐pairs in their side walls, and are much less efficient than the end‐perforated vessel members in broad‐leaf xylem systems. These conclusions remain hypothetical until direct measurements of these parameters are available.  相似文献   

19.
Transpiration of cuticular membranes isolated from the lower stomatous surface of Hedera helix (ivy) leaves was measured using a novel approach which allowed a distinction to be made between gas phase diffusion (through stomatal pores) and solid phase diffusion (transport through the polymer matrix membrane and cuticular waxes) of water molecules. This approach is based on the principle that the diffusivity of water vapour in the gas phase can be manipulated by using different gases (helium, nitrogen, or carbon dioxide) while diffusivity of water in the solid phase is not affected. This approach allowed the flow of water across stomatal pores ('stomatal transpiration') to be calculated separately from the flow across the cuticle (cuticular transpiration) on the stomatous leaf surface. As expected, water flux across the cuticle isolated from the astomatous leaf surface was not affected by the gas composition since there are no gas-filled pores. Resistance to flux of water through the solid cuticle on the stomatous leaf surface was about 11 times lower than cuticular resistance on the astomatous leaf surface, indicating pronounced differences in barrier properties between cuticles isolated from both leaf surfaces. In order to check whether this difference in resistance was due to different barrier properties of cuticular waxes on both leaf sides, mobility of 14C-labelled 2,4-dichlorophenoxy-butyric acid 14C-2,4-DB) in reconstituted cuticular wax isolated from both leaf surfaces was measured separately. However, mobility of 14C-2,4-DB in reconstituted wax isolated from the lower leaf surface was 2.6 times lower compared with the upper leaf side. The significantly higher permeability of the ivy cuticle on the lower stomatous leaf surface compared with the astomatous surface might result from lateral heterogeneity in permeability of the cuticle covering normal epidermal cells compared with the cuticle covering the stomatal cell surface.  相似文献   

20.
Guard cell protoplasts from starch-containing Vicia faba and starch-deficient Allium cepa stomata were isolated, stabilized and recovered with an efficiency — in relation to the potential yield — of approx. 62% and 77%, respectively. In vitro, guard cell protoplasts (GCP) respond to abscisic acid and fusicoccin by respectively contracting and swelling, that is, decreasing or increasing in diameter by about 15% and more in comparison to the control. This in vitro response correlates with, but is more than 4 times as rapid as, the in vivo response of the stomata. Among the advantages presented by working with isolated GCPs are: greater sensitivity in response; freedom from influences of cuticular ridges, cell walls, subsidiary cells, and epidermal cells; and direct and parallel comparisons of starch-containing and starch-deficient GCP systems.Abbrecviations ABA abscisic acid - FC fusicoccin - ECP, MCP, and GCP epidermal, mesophyll, and guard cell protoplasts, respectively - PPV packed protoplast volume  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号