首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Zaman T  Lee K  Park C  Paydar A  Choi JH  Cheong E  Lee CJ  Shin HS 《Neuron》2011,70(1):95-108
Neurons of the reticular thalamus (RT) display oscillatory burst discharges that are believed to be critical for thalamocortical network oscillations related to absence epilepsy. Ca2+-dependent mechanisms underlie such oscillatory discharges. However, involvement of high-voltage activated (HVA) Ca2+ channels in this process has been discounted. We examined this issue closely using mice deficient for the HVA Ca(v)2.3 channels. In brain slices of Ca(v)2.3?/?, a hyperpolarizing current injection initiated a low-threshold burst of spikes in RT neurons; however, subsequent oscillatory burst discharges were severely suppressed, with a significantly reduced slow afterhyperpolarization (AHP). Consequently, the lack of Ca(v)2.3 resulted in a marked decrease in the sensitivity of the animal to γ-butyrolactone-induced absence epilepsy. Local blockade of Ca(v)2.3 channels in the RT mimicked the results of Ca(v)2.3?/? mice. These results provide strong evidence that Ca(v)2.3 channels are critical for oscillatory burst discharges in RT neurons and for the expression of absence epilepsy.  相似文献   

2.
In this review, we summarize three sets of findings that have recently been observed in thalamic astrocytes and neurons, and discuss their significance for thalamocortical loop dynamics. (i) A physiologically relevant 'window' component of the low-voltage-activated, T-type Ca(2+) current (I(Twindow)) plays an essential part in the slow (less than 1 Hz) sleep oscillation in adult thalamocortical (TC) neurons, indicating that the expression of this fundamental sleep rhythm in these neurons is not a simple reflection of cortical network activity. It is also likely that I(Twindow) underlies one of the cellular mechanisms enabling TC neurons to produce burst firing in response to novel sensory stimuli. (ii) Both electrophysiological and dye-injection experiments support the existence of gap junction-mediated coupling among young and adult TC neurons. This finding indicates that electrical coupling-mediated synchronization might be implicated in the high and low frequency oscillatory activities expressed by this type of thalamic neuron. (iii) Spontaneous intracellular Ca(2+) ([Ca(2+)](i)) waves propagating among thalamic astrocytes are able to elicit large and long-lasting N-methyl-D-aspartate-mediated currents in TC neurons. The peculiar developmental profile within the first two postnatal weeks of these astrocytic [Ca(2+)](i) transients and the selective activation of these glutamate receptors point to a role for this astrocyte-to-neuron signalling mechanism in the topographic wiring of the thalamocortical loop. As some of these novel cellular and intracellular properties are not restricted to thalamic astrocytes and neurons, their significance may well apply to (patho)physiological functions of glial and neuronal elements in other brain areas.  相似文献   

3.
Intracortical inhibition plays a role in shaping sensory cortical receptive fields and is mediated by both feed-forward and feedback mechanisms. Feed-forward inhibition is the faster of the two processes, being generated by inhibitory interneurons driven by monosynaptic thalamocortical (TC) input. In principle, feed-forward inhibition can prevent targeted cortical neurons from ever reaching threshold when TC input is weak. To do so, however, inhibitory interneurons must respond to TC input at low thresholds and generate spikes very quickly. A powerful feed-forward inhibition would sharpen the tuning characteristics of targeted cortical neurons, and interneurons with sensitive and broadly tuned receptive fields could mediate this process. Suspected inhibitory interneurons (SINs) with precisely these properties are found in layer 4 of the somatosensory (S1) 'barrel' cortex of rodents and rabbits. These interneurons lack the directional selectivity seen in most cortical spiny neurons and in ventrobasal TC afferents, but are much more sensitive than cortical spiny neurons to low-amplitude whisker displacements. This paper is concerned with the activation of S1 SINs by TC impulses, and with the consequences of this activation. Multiple TC neurons and multiple S1 SINs were simultaneously studied in awake rabbits, and cross-correlation methods were used to examine functional connectivity. The results demonstrate a potent, temporally precise, dynamic and highly convergent/divergent functional input from ventrobasal TC neurons to SINs of the topographically aligned S1 barrel. Whereas the extensive pooling of convergent TC inputs onto SINs generates sensitive and broadly tuned inhibitory receptive fields, the potent TC divergence onto many SINs generates sharply synchronous activity among these elements. This TC feed-forward inhibitory network is well suited to provide a fast, potent, sensitive and broadly tuned inhibition of targeted spiny neurons that will suppress spike generation following all but the most optimal feed-forward excitatory inputs.  相似文献   

4.
Thalamic neurons generate high-frequency bursts of action potentials when a low-threshold (T-type) calcium current, located in soma and dendrites, becomes activated. Computational models were used to investigate the bursting properties of thalamic relay and reticular neurons. These two types of thalamic cells differ fundamentally in their ability to generate bursts following either excitatory or inhibitory events. Bursts generated with excitatory inputs in relay cells required a high degree of convergence from excitatory inputs, whereas moderate excitation drove burst discharges in reticular neurons from hyperpolarized levels. The opposite holds for inhibitory rebound bursts, which are more difficult to evoke in reticular neurons than in relay cells. The differences between the reticular neurons and thalamocortical neurons were due to different kinetics of the T-current, different electrotonic properties and different distribution patterns of the T-current in the two cell types. These properties enable the cortex to control the sensitivity of the thalamus to inputs and are also important for understanding states such as absence seizures.  相似文献   

5.
The temporal features of tactile stimuli are faithfully represented by the activity of neurons in the somatosensory cortex. However, the cellular mechanisms that enable cortical neurons to report accurate temporal information are not known. Here, we show that in the rodent barrel cortex, the temporal window for integration of thalamic inputs is under the control of thalamocortical feed-forward inhibition and can vary from 1 to 10 ms. A single thalamic fiber can trigger feed-forward inhibition and contacts both excitatory and inhibitory cortical neurons. The dynamics of feed-forward inhibition exceed those of each individual synapse in the circuit and are captured by a simple disynaptic model of the thalamocortical projection. The variations in the integration window produce changes in the temporal precision of cortical responses to whisker stimulation. Hence, feed-forward inhibitory circuits, classically known to sharpen spatial contrast of tactile inputs, also increase the temporal resolution in the somatosensory cortex.  相似文献   

6.
T-type Ca2+ channels play a number of different and pivotal roles in almost every type of neuronal oscillation expressed by thalamic neurones during non-rapid eye movement (NREM) sleep, including those underlying sleep theta waves, the K-complex and the slow (<1 Hz) sleep rhythm, sleep spindles and delta waves. In particular, the transient opening of T channels not only gives rise to the 'classical' low threshold Ca2+ potentials, and associated high frequency burst of action potentials, that are characteristically present during sleep spindles and delta waves, but also contributes to the high threshold bursts that underlie the thalamic generation of sleep theta rhythms. The persistent opening of a small fraction of T channels, i.e. I(Twindow), is responsible for the large amplitude and long lasting depolarization, or UP state, of the slow (<1 Hz) sleep oscillation in thalamic neurones. These cellular findings are in part matched by the wake-sleep phenotype of global and thalamic-selective CaV3.1 knockout mice that show a decreased amount of total NREM sleep time. T-type Ca2+ channels, therefore, constitute the single most crucial voltage-dependent conductance that permeates all activities of thalamic neurones during NREM sleep. Since I(Twindow) and high threshold bursts are not restricted to thalamic neurones, the cellular neurophysiology of T channels should now move away from the simplistic, though historically significant, view of these channels as being responsible only for low threshold Ca2+ potentials.  相似文献   

7.
We use dynamic clamp to construct "hybrid" thalamic circuits by connecting a biological neuron in situ to silicon- or software-generated "neurons" through artificial synapses. The purpose is to explore cellular sensory gating mechanisms that regulate the transfer efficiency of signals during different sleep-wake states. Hybrid technology is applied in vitro to different paradigms such as: (1) simulating interactions between biological thalamocortical neurons, artificial reticular thalamic inhibitory interneurons and a simulated sensory input, (2) grafting an artificial sensory input to a wholly biological thalamic network that generates spontaneous sleep-like oscillations, (3) injecting in thalamocortical neurons a background synaptic bombardment mimicking the activity of corticothalamic inputs. We show that the graded control of the strength of intrathalamic inhibition, combined with the membrane polarization and the fluctuating synaptic noise in thalamocortical neurons, is able to govern functional shifts between different input/output transmission states of the thalamic gate.  相似文献   

8.
Thalamic afferents supply the cortex with sensory information by contacting both excitatory neurons and inhibitory interneurons. Interestingly, thalamic contacts with interneurons constitute such a powerful synapse that even one afferent can fire interneurons, thereby driving feedforward inhibition. However, the spatial representation of this potent synapse on interneuron dendrites is poorly understood. Using Ca imaging and electron microscopy we show that an individual thalamic afferent forms multiple contacts with the interneuronal proximal dendritic arbor, preferentially near branch points. More contacts are correlated with larger amplitude synaptic responses. Each contact, consisting of a single bouton, can release up to seven vesicles simultaneously, resulting in graded and reliable Ca transients. Computational modeling indicates that the release of multiple vesicles at each contact minimally reduces the efficiency of the thalamic afferent in exciting the interneuron. This strategy preserves the spatial representation of thalamocortical inputs across the dendritic arbor over a wide range of release conditions.  相似文献   

9.
Neuronal high-voltage-activated (HVA) Ca(2+) channels are rapidly inactivated by a mechanism that is termed Ca(2+)-dependent inactivation (CDI). In this study we have shown that β-adrenergic receptor (βAR) stimulation inhibits CDI in rat thalamocortical (TC) relay neurons. This effect can be blocked by inhibition of cAMP-dependent protein kinase (PKA) with a cell-permeable inhibitor (myristoylated protein kinase inhibitor-(14-22)-amide) or A-kinase anchor protein (AKAP) St-Ht31 inhibitory peptide, suggesting a critical role of these molecules downstream of the receptor. Moreover, inhibition of protein phosphatases (PP) with okadaic acid revealed the involvement of phosphorylation events in modulation of CDI after βAR stimulation. Double fluorescence immunocytochemistry and pull down experiments further support the idea that modulation of CDI in TC neurons via βAR stimulation requires a protein complex consisting of Ca(V)1.2, PKA and proteins from the AKAP family. All together our data suggest that AKAPs mediate targeting of PKA to L-type Ca(2+) channels allowing their phosphorylation and thereby modulation of CDI.  相似文献   

10.
Granule cells acutely dissociated from the dentate gyrus of adult rat brains displayed a single class of high-threshold, voltage-activated (HVA) Ca2+ channels. The kinetics of whole-cell Ca2+ currents recorded with pipette solutions containing an intracellular ATP regenerating system but devoid of exogenous Ca2+ buffers, were fit best by Hodgkin-Huxley kinetics (m2h), and were indistinguishable from those recorded with the nystatin perforated patch method. In the absence of exogenous Ca2+ buffers, inactivation of HVA Ca2+ channels was a predominantly Ca(2+)-dependent process. The contribution of endogenous Ca2+ buffers to the kinetics of inactivation was investigated by comparing currents recorded from control cells to currents recorded from neurons that have lost a specific Ca(2+)-binding protein, Calbindin-D28K (CaBP), after kindling-induced epilepsy. Kindled neurons devoid of CaBP showed faster rates of both activation and inactivation. Adding an exogenous Ca2+ chelator, 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), to the intracellular solution largely eliminated inactivation in both control and kindled neurons. The results are consistent with the hypothesis that endogenous intraneuronal CaBP contributes significantly to submembrane Ca2+ sequestration at a concentration range and time domain that regulate Ca2+ channel inactivation.  相似文献   

11.
Hughes SW  Cope DW  Blethyn KL  Crunelli V 《Neuron》2002,33(6):947-958
The slow (<1 Hz) rhythm is a defining feature of the electroencephalogram during sleep. Since cortical circuits can generate this rhythm in isolation, it is assumed that the accompanying slow oscillation in thalamocortical (TC) neurons is largely a passive reflection of neocortical activity. Here we show, however, that by activating the metabotropic glutamate receptor (mGluR), mGluR1a, cortical inputs can recruit intricate cellular mechanisms that enable the generation of an intrinsic slow oscillation in TC neurons in vitro with identical properties to those observed in vivo. These mechanisms rely on the "window" component of the T-type Ca(2+) current and a Ca(2+)-activated, nonselective cation current. These results suggest an active role for the thalamus in shaping the slow (<1 Hz) sleep rhythm.  相似文献   

12.
Sher.  SM 《生理学报》1997,49(3):307-313
在离体猫丘脑脑片上观察了乙酰胆碱对外膝体中继神经元膜的低阈值T-型钙电导的影响。电流箝位和电压箝位实验结果都显示:将膜电位箝制到给药前的对照水平,排除了乙酰胆碱的去极化作用后,大多数(82%)外膝外神经元的低阈值钙电导仍然被乙酰胆碱所抑制。说明这种抑制作用独立于乙酰胆碱引起的膜电位变化,而是对低阈值T-型钙通道的直接作用。  相似文献   

13.
Ca2+ ions play an important role during rhythmic bursting of thalamocortical neurons within sleep. The function of Ca2+ during the tonic relay mode of these neurons during wakefulness is less clear. Here, we report that tonic activity in thalamocortical cells results in an increase in the intracellular Ca2+ concentration and subsequent release of Ca2+ from intracellular stores mediated via ryanodine receptors (RyRs). Blockade of Ca2+ release shifted the regular firing of single action potentials toward the generation of spike clusters. Regular spike firing and intracellular Ca2+ release thus appear to be functionally coupled in a positive feedback manner, thereby supporting the relay mode of thalamocortical cells during wakefulness. Regulatory influences may be coupled to this system via the cyclic ADP ribose pathway.  相似文献   

14.
Sleep spindles and K-complexes (KCs) define stage 2 NREM sleep (N2) in humans. We recently showed that KCs are isolated downstates characterized by widespread cortical silence. We demonstrate here that KCs can be quasi-synchronous across scalp EEG and across much of the cortex using electrocorticography (ECOG) and localized transcortical recordings (bipolar SEEG). We examine the mechanism of synchronous KC production by creating the first conductance based thalamocortical network model of N2 sleep to generate both spontaneous spindles and KCs. Spontaneous KCs are only observed when the model includes diffuse projections from restricted prefrontal areas to the thalamic reticular nucleus (RE), consistent with recent anatomical findings in rhesus monkeys. Modeled KCs begin with a spontaneous focal depolarization of the prefrontal neurons, followed by depolarization of the RE. Surprisingly, the RE depolarization leads to decreased firing due to disrupted spindling, which in turn is due to depolarization-induced inactivation of the low-threshold Ca2+ current (IT). Further, although the RE inhibits thalamocortical (TC) neurons, decreased RE firing causes decreased TC cell firing, again because of disrupted spindling. The resulting abrupt removal of excitatory input to cortical pyramidal neurons then leads to the downstate. Empirically, KCs may also be evoked by sensory stimuli while maintaining sleep. We reproduce this phenomenon in the model by depolarization of either the RE or the widely-projecting prefrontal neurons. Again, disruption of thalamic spindling plays a key role. Higher levels of RE stimulation also cause downstates, but by directly inhibiting the TC neurons. SEEG recordings from the thalamus and cortex in a single patient demonstrated the model prediction that thalamic spindling significantly decreases before KC onset. In conclusion, we show empirically that KCs can be widespread quasi-synchronous cortical downstates, and demonstrate with the first model of stage 2 NREM sleep a possible mechanism whereby this widespread synchrony may arise.  相似文献   

15.
We investigated a simplified model of a thalamocortical cell and a reticular thalamic cell interconnected with excitatory and inhibitory synapses, based on Hodgkin-Huxley type kinetics. The intrinsic oscillatory properties of the model cells were similar to those observed from single cells in vitro. When synaptic interactions were included, spindle oscillations were observed consisting of sequences of rhythmic oscillations at 8-10 Hz separated by silent periods of 8-40 s. The model suggests that Ca2+ regulation of lh channels may be responsible for the waxing and waning of spindles and that the reticular cell shapes the 10-Hz rhythmicity. The model also predicts that the kinetics of gamma-aminobutyric acid inhibitory postsynaptic potentials as well as the intrinsic properties of reticular cells are critical in determining the frequency of spindle rhythmicity.  相似文献   

16.
MacLean JN  Watson BO  Aaron GB  Yuste R 《Neuron》2005,48(5):811-823
Although spontaneous activity occurs throughout the neocortex, its relation to the activity produced by external or sensory inputs remains unclear. To address this, we used calcium imaging of mouse thalamocortical slices to reconstruct, with single-cell resolution, the spatiotemporal dynamics of activity of layer 4 in the presence or absence of thalamic stimulation. We found spontaneous neuronal coactivations corresponded to intracellular UP states. Thalamic stimulation of sufficient frequency (>10 Hz) triggered cortical activity, and UP states, indistinguishable from those arising spontaneously. Moreover, neurons were activated in identical and precise spatiotemporal patterns in thalamically triggered and spontaneous events. The similarities between cortical activations indicate that intracortical connectivity plays the dominant role in the cortical response to thalamic inputs. Our data demonstrate that precise spatiotemporal activity patterns can be triggered by thalamic inputs and indicate that the thalamus serves to release intrinsic cortical dynamics.  相似文献   

17.
Kinetics of the low threshold T-type Ca2+ channel is studied with single electrode voltage damp technique on brain slices of the cat lateral geniculate nucleus (LGN). Space damp is dramatically improved by blocking various K+ and Na+ channels, decreasing Ca2+ current and selecting proper holding potentials. Results from this study are similar to those obtained from acutely dissociated LGN neurons of the rat, indicating that the kinetics of T-Ca2+ channels of the cat LGN neurons is the same as that of the rat LGN. The result reported previously on the cat LGN may result from a defect in space damp.  相似文献   

18.
Determinants of postsynaptic Ca2+ signaling in Purkinje neurons   总被引:1,自引:0,他引:1  
Neuronal integration in Purkinje neurons involves many forms of Ca2+ signaling. Two afferent synaptic inputs, the parallel and the climbing fibers, provide a major drive for these signals. These two excitatory synaptic inputs are both glutamatergic. Postsynaptically they activate alpha-amino-3-hydroxy-5-methyl-4-propionic acid (AMPA) receptors (AMPARs) and metabotropic glutamate receptors (mGluRs). Unlike most other types of central neurons, Purkinje neurons do not express NMDA (N-methyl-D-aspartate) receptors (NMDARs). AMPARs in Purkinje neurons are characterized by a low permeability for Ca2+ ions. AMPAR-mediated synaptic depolarization may activate voltage-gated Ca2+ channels, mostly of the P/Q-type. The resulting intracellular Ca2+ signals are shaped by the Ca2+ buffers calbindin and parvalbumin. Ca2+ clearance from the cytosol is brought about by Ca2+-ATPases in the plasma membrane and the endoplasmic reticulum, as well as the Na+-Ca2+-exchanger. Binding of glutamate to mGluRs induces postsynaptic Ca2+-transients through two G protein-dependent pathways: involving (1) the release of Ca2+ ions from intracellular Ca2+ stores and (2) the opening of the cation channel TRPC1. Homer proteins appear to play an important role in postsynaptic Ca2+ signaling by providing a direct link between the plasma membrane-resident elements (mGluRs and TRPC1) and their intracellular partners, including the IP3Rs.  相似文献   

19.
The pharmacological and single-channel properties of Ca2+ channels were studied in the somata and dendrites of adult cerebellar Purkinje cells. The Ca2+ channels were exclusively of the high threshold type: low threshold Ca2+ channels were not found. These high threshold channels were not blocked by omega-conotoxin GVIA and were inhibited rather than activated by BAY K 8644. They were therefore pharmacologically distinct from high threshold N- and L-type channels. Funnel web spider toxin was an effective blocker. The channels opened to conductance levels of 9, 14, and 19 pS (in 110 mM Ba2+). These slope conductances were in the range of those reported for N- and L-type channels. Our results are in agreement with previous reports suggesting that Ca2+ channels in Purkinje cells can be classified as P-type channels according to their pharmacology. The results also suggest that distinctions among Ca2+ channel types based on the single-channel conductance are not definitive.  相似文献   

20.
Kim D  Song I  Keum S  Lee T  Jeong MJ  Kim SS  McEnery MW  Shin HS 《Neuron》2001,31(1):35-45
T-type Ca(2+) currents have been proposed to be involved in the genesis of spike-and-wave discharges, a sign of absence seizures, but direct evidence in vivo to support this hypothesis has been lacking. To address this question, we generated a null mutation of the alpha(1G) subunit of T-type Ca(2+) channels. The thalamocortical relay neurons of the alpha(1G)-deficient mice lacked the burst mode firing of action potentials, whereas they showed the normal pattern of tonic mode firing. The alpha(1G)-deficient thalamus was specifically resistant to the generation of spike-and-wave discharges in response to GABA(B) receptor activation. Thus, the modulation of the intrinsic firing pattern mediated by alpha(1G) T-type Ca(2+) channels plays a critical role in the genesis of absence seizures in the thalamocortical pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号