首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pleiotropic human KB cell mutants, selected for resistance to a conjugate of epidermal growth factor with Pseudomonas exotoxin (PE-EGF), were characterized genetically. These mutants have a pleiotropic phenotype, which includes reduced number of EGF receptors and reduced growth rate. Hybrid cells between HeLa D98 and four out of five of these resistant cell lines were more resistant to PE-EGF than hybrids formed between HeLa D98 and parental KB cells. This result indicates that the phenotype of PE-EGF resistance is incompletely dominant in four out of five cases and recessive in one out of five variants. In three separate experiments, transfection of DNA from two of the dominant resistant cell lines resulted in transformation of wild-type KB cells to PE-EGF resistance, confirming the dominant nature of these mutations, which affect levels of EGF receptor in KB cells.  相似文献   

2.
The resistance of tumors to cisplatin remains a major cause of treatment failure in cancer patients. Multiple, simultaneous alterations are frequently encountered in cancer cells selected for cisplatin resistance. To determine whether the complex phenotype results from many different cellular alterations, single-step variants were isolated based on one-step selection in cisplatin. Reduced drug accumulation is a common feature of cisplatin-resistant (CP-r) cancer cells, which is probably caused by one or more dominant genes. Pulse-chase labeling and pulse-chase biotinylation of cell surface proteins suggest that membrane protein mislocalization occurs in CP-r cells, caused mainly by a defect in plasma membrane protein recycling, manifested also as a defect in acidification of lysosomes. This membrane protein mislocalization is presumed to reduce cell surface expression of a putative cisplatin carrier or carriers. In cells selected in several steps, decreased expression of folate-binding protein and arsenic-binding proteins, and reduced endocytosis were detected in CP-r cells, contributing to the reduced uptake of cisplatin, methotrexate and other related compounds. Multiple mechanisms in CP-r cells keep cytotoxic platinum compounds out of cells through defective expression of cell surface proteins such as transporters and carriers, and decreased expression of proteins involved in endocytosis.  相似文献   

3.
Cisplatin is a chemotherapeutic agent commonly used in the treatment of a wide variety of malignant tumors. Resistance to cisplatin represents a major obstacle to effective cancer therapy because clinically significant levels of resistance quickly emerge after treatment. Based on previous studies indicating abnormal plasma membrane protein trafficking in cisplatin-resistant (CP-r) cells, Fluorescence (Alexa Fluor)-labeled cisplatin was used to determine whether this defect altered the trafficking and localization of cisplatin by comparing drug sensitive KB-3-1 and KB-CP-r cells. Alexa Fluor-cisplatin was readily internalized and localized throughout the KB-3-1 cells, but overall fluorescence decreased in KB-CP-r cells, as detected by flow cytometry (FACS) and confocal microscopy. Only punctate cytoplasmic staining was observed in KB-CP-r cells with less fluorescence observed in the nucleus. Colocalization experiments with a Golgi-selective stain indicate the involvement of Golgi-like vesicles in initial intracellular processing of Alexa Fluor conjugated cisplatin complexes. As detected using an antibody to Alexa Fluor-cisplatin, cisplatin complex-binding proteins (CCBPs) were reduced in membrane fractions of single-step cisplatin-resistant KB-CP.5 cells, and increased in the cytoplasm of KB-CP.5 cells compared to KB-3-1 cells. CCBPs localized to lower density fractions in KB-CP.5 cells than in KB-3-1 cells as determined by iodixanol gradient centrifugation. In summary, inappropriate trafficking of CCBPs might explain resistance to cisplatin in cultured cancer cells, presumably because membrane binding proteins for cisplatin are not properly located on the cell surface in these cells, but are instead trapped in low density vesicles within the cytoplasm.  相似文献   

4.
Summary The human tumor-derived cell line HeLa S3 and nuclear and mitochondrial gene mutants derived from it are resistant to the aminoglycoside antibiotic, paromomycin (PAR). Other carcinoma-derived cells, SV40-transformed cells, and four human diploid fibroblast cell lines are all sensitive to PAR. Sensitivity is dependent on cell density, and at cell numbers greater than 400/cm2 sensitive cells will proliferate in PAR. The resistance to PAR is inherited in a dominant manner in cell-to-cell fusion hybrids, but is not transferred in cytoplast-to-cell fusions. PAR resistance is therefore encoded by a nuclear gene(s). Resistance to PAR is not caused by changes in the response to mitochondrial or cytoplasmic protein synthesis to PAR in vitro. The uptake of PAR is similar in resistant and sensitive cells, and dimethyl sulfoxide does not render resistant cells more sensitive. Thus, HeLa cell PAR resistance is unlike previously reported ribosomal mutations and may derive from differences in the intracellular metabolism of PAR. This work was supported by National Institutes of Health grant number AG 02664, University of South Carolina Biomedical Research Support grant number S07 RR7160, and by a grant from the Elsa U. Pardee Foundation, all to C. L. B.  相似文献   

5.
A number of human intraspecific hybrids were produced by fusing the 8-azaguanine-resistant cell line D98/AH-2 with PHA-stimulated lymphocytes from a normal human male, followed by selection in HAT medium. The parent cells differed in zymogram patterns for 4 enzyme systems. Hypoxanthine-guanine phophoribosyltransferase was missing in D98/AH-2 and was determined in the hybrids by the normal gene derived from the lymphocyte donor's X chromosome. The HL-A antigens of the lymphocyte donor as well as the W28 specificity from HeLa were easily recognized by a cytotoxicity assay on the hybrid cells, while D98/AH-2 itself was not killed in the normal way by any HL-4 typing sera. The initial hybrid karyotype in all lines was relatively stable, but slow loss of chromosomes occurred following extended growth in culture. The importance of the culture conditions for the rate of chromosome loss was demonstrated. The behavior of several chromosomes was followed in the hybrids and their derivatives. There was relatively nonspecific loss of small numbers of chromosomes, showing that loss of chromosomes from both the D98/AH-2 and the normal lymphocyte parent can occur. Cell lines resistant to 6-thioguanine were selected from the sensitive hybrids. Most had lost the lymphocyte donor's X chromosome, thereby losing the only active allele for HGPRT present in the initial hybrids. However, one line, DMR41, apparently retained the X chromosome and may have a mutated allele for HGPRT. Two lines that are the products of spontaneous segregation are also described. DM4CS and DM17A.  相似文献   

6.
We have isolated cisplatin-resistant human liver carcinoma (7404-CP20) cells with reduced accumulation of cisplatin and other drugs (methotrexate, arsenate, and arsenite) to which these cells are cross-resistant. To determine whether the reduction of drug accumulation in cisplatin-resistant cells results from impaired uptake or from active efflux, [(14)C]carboplatin was used for kinetic analysis of drug uptake and efflux. We demonstrate here that the uptake of [(14)C]carboplatin in 7404 parental cells is time, temperature, and energy dependent, and that the rate of uptake is reduced in 7404-CP20 cells. Efflux of [(14)C]carboplatin in cisplatin-resistant cells was comparable to efflux in the parental cisplatin-sensitive cells. There was little effect of temperature (between 37 degrees C and 4 degrees C) on efflux in cisplatin-resistant cells. Immunoblotting with specific antibodies directed to MRP1 and MRP2 (cMOAT) also showed that expression of these two ABC transporter genes was considerably reduced in 7404-CP20 cells and another cisplatin-resistant cell line KB-CP20, in contradistinction to previous studies suggesting that MRP might be responsible for cisplatin efflux. To rule out a generalized defect in uptake of small molecules, fluorescence-activated cell sorter (FACS) analysis of rhodamine 123 uptake showed that there was no difference between cisplatin-sensitive and -resistant cells. The presence of a pleiotropic defect in uptake of [(14)C]carboplatin, [(3)H]methotrexate, [(73)As]arsenate, and [(73)As]arsenite in cisplatin-resistant cells, in association with reduced expression of related cell surface proteins as demonstrated in our previous work, suggests a novel mechanism for acquisition of resistance to cisplatin associated with reduced activity of many different specific uptake systems.  相似文献   

7.
8.
The majority of ovarian tumors eventually recur in a drug resistant form. Using cisplatin sensitive and resistant cell lines assembled into 3D spheroids we profiled gene expression and identified candidate mechanisms and biological pathways associated with cisplatin resistance. OVCAR-8 human ovarian carcinoma cells were exposed to sub-lethal concentrations of cisplatin to create a matched cisplatin-resistant cell line, OVCAR-8R. Genome-wide gene expression profiling of sensitive and resistant ovarian cancer spheroids identified 3,331 significantly differentially expressed probesets coding for 3,139 distinct protein-coding genes (Fc >2, FDR < 0.05) (S2 Table). Despite significant expression changes in some transporters including MDR1, cisplatin resistance was not associated with differences in intracellular cisplatin concentration. Cisplatin resistant cells were significantly enriched for a mesenchymal gene expression signature. OVCAR-8R resistance derived gene sets were significantly more biased to patients with shorter survival. From the most differentially expressed genes, we derived a 17-gene expression signature that identifies ovarian cancer patients with shorter overall survival in three independent datasets. We propose that the use of cisplatin resistant cell lines in 3D spheroid models is a viable approach to gain insight into resistance mechanisms relevant to ovarian tumors in patients. Our data support the emerging concept that ovarian cancers can acquire drug resistance through an epithelial-to-mesenchymal transition.  相似文献   

9.
10.
Stable dexamethasone resistant and receptor-containing (R+) variants of L cells have been characterized by somatic cell hybridization. Neither of the variants had a clearly dominant phenotype in hybrids with dexamethasone-sensitive fibroblast lines, i.e. the resistance of the variants was not due to transdominant factors. Somatic cell hybrids formed between one of the R+-resistant clones and an independent resistant fibroblast cell line showed complementation--the hybrid clones were as sensitive to the steroid as the sensitive parental lines. Complementation, however, disappeared after continued culture of the clones. The return of the dexamethasone-sensitive phenotype was not always linked with similar changes in the responsiveness to another steroid, e.g. progesterone. Our clones can be considered to be resistant variants, designated death-less (d-), where the cells are defective in a non-receptor component involved in the hormone response. The fact that complementation can occur indicates the existence of at least two such steps in the pathway.  相似文献   

11.
Summary Twenty stable variant lines resistant to isonicotinic acid hydrazide (INH), an inhibitor of the conversion of glycine to serine in the glycolate pathway, were isolated in cell cultures initiated from allodihaploid Nicotiana tabacum. Plants were regenerated from 13 of these lines and explants were tested for resistance. For some lines virtually all of the regenerated plants scored as resistant; for others a mixed population of sensitive and resistant plants were obtained. One or more plants from 5 lines were fertile, presumably as a result of spontaneous diploidization of cells in the plant or culture. Callus initiated from the seed progeny of these plants was resistant to INH confirming the characteristic as a stable mutation. Seedlings from all INH-resistant plants were small and slow-growing, but the slow-growth trait could be separated from resistance in backcrosses of hybrids. In one case (line I21) crosses with sensitive lines show the resistant trait in that line to be dominant.  相似文献   

12.
The selection of MDR3, an adenine-salvage-deficient variant of the Kc line, is described. It is resistant to methylpurine and to diaminopurine and is TAM (thymidine, adenine, methotrexate) sensitive. Two wild-type (TAM-resistant) cell lines, Schneider's line 3 (S3) and Dübendorfer's line 1 (D1), due to their different nutritional requirements, are unable to proliferate in medium ZH1% used for line MDR3. This allowed the selection of hybrids between MDR3 and either D1 or S3 in TAM cloning medium after treatment with polyethyleneglycol. Hybrids were identified by the isoenzyme pattern of NADP-dependent isocitrate dehydrogenase.  相似文献   

13.
Somatic cell hybrids between SNB-19 human glioblastoma cells and human D98OR HeLa parental cells were produced and analyzed for their ability to form tumors in nude mice and to invade reconstituted extracellular matrix (Matrigel). Whereas both the SNB-19 and D98OR HeLa parental cells form tumors, four of six hybrid lines did not form tumors, even after periods up to six months, suggesting that each cell type can complement the tumorigenicity of the other. SNB-19 cells showed high rates of Matrigel invasion at all cell densities examined, whereas D98OR HeLa cells showed lower rates of invasion that were further reduced at high cell density. All six hybrid cell lines displayed a combination of these properties: at low cell density, the hybrids showed high rates of invasion, similar to the SNB-19 cells, but the invasion rate diminished at higher cell densities, similar to the D98OR HeLa cells. Taken together, these results provide new experimental evidence that several distinct genetic changes are involved in generating the tumorigenic and invasive phenotype of glioblastoma cells. © 1995 Wiley-Liss, Inc.  相似文献   

14.
Combination chemotherapy with gemcitabine and cisplatin in patients with metastatic urothelial cancer of the bladder frequently results in the development of acquired drug resistance. Availability of cell culture models with acquired resistance could help to identify candidate treatments for an efficient second-line therapy. Six cisplatin- and six gemcitabine-resistant cell lines were established. Cell viability assays were performed to evaluate the sensitivity to 16 different chemotherapeutic substances. The activity of the drug transporter ATP-binding cassette transporter, subfamily B, member 1 (ABCB1, a critical mediator of multidrug resistance in cancer) was evaluated using fluorescent ABCB1 substrates. For functional assessment, cells overexpressing ABCB1 were generated by transduction with a lentiviral vector encoding for ABCB1, while zosuquidar was used for selective inhibition. In this study, 8 of 12 gemcitabine- or cisplatin-resistant cell lines were cross-resistant to carboplatin, 5 to pemetrexed, 4 to methotrexate, 3 to oxaliplatin, 5-fluorouracil, and paclitaxel, and 2 to cabazitaxel, larotaxel, docetaxel, topotecan, doxorubicin, and mitomycin c, and 1 of 12 cell lines was cross-resistant to vinflunine and vinblastine. In one cell line with acquired resistance to gemcitabine (TCC-SUPrGEMCI20), cross-resistance seemed to be mediated by ABCB1 expression. Our model identified the vinca alkaloids vinblastine and vinflunine, in Europe an already approved second-line therapeutic for metastatic bladder cancer, as the most effective compounds in urothelial cancer cells with acquired resistance to gemcitabine or cisplatin. These results demonstrate that this in vitro model can reproduce clinically relevant results and may be suitable to identify novel substances for the treatment of metastatic bladder cancer.  相似文献   

15.
Resistance to cisplatin in several murine leukemia L1210 cell lines is due to enhanced DNA repair. Other platinum complexes, particularly those containing 1,2-diaminocyclohexane (DACH) are of interest as they effectively kill both sensitive (L1210/0) and cisplatin-resistant (L1210/DDP) cell lines. An L1210/DACH cell line has been developed that is preferentially resistant to DACH-Pt complexes. In the current experiments, we investigated the role that DNA repair has in resistance to DACH-Pt compounds. The DACH ligand exists in 3 isomeric forms which exhibit markedly different activities in the various resistant cell lines. Generally, R,R-DACH-Pt was the most effective isomer. DNA repair was assayed by host-cell reactivation of platinated pRSVcat. DNA damage induced by all the isomeric DACH-Pt-SO4 complexes markedly reduced CAT expression in sensitive L1210/0 cells. One adduct per transcribed strand of the cat gene inhibited CAT expression demonstrating that the sensitive cells exhibited no detectable DNA repair. All the resistant cell lines reactivated the plasmid DNA whether damaged with cisplatin or any of the 3 DACH-Pt isomers. Therefore, resistance to both cisplatin and DACH-Pt appears to be mediated by enhanced DNA repair, but the level of reactivation of the transfected plasmid did not correlate with the toxicity of each analogue. These results suggest that some additional event(s) is responsible for the substrate specificity of repair of genomic DNA. These resistant cell lines also exhibited resistance to UV irradiation but this was much less than, and did not correlate with the degree of resistance to either cisplatin or DACH-Pt. However, there was a good correlation between resistance to UV irradiation and reactivation of UV-damaged plasmid DNA. This enhanced reactivation suggests that enhanced repair may be the sole reason for the resistance to UV irradiation.  相似文献   

16.
We studied the sensitivity of tumor cells to the induction of apoptosis by iron deprivation. Iron deprivation was achieved by the employment of a defined iron-deficient culture medium. Mouse 38C13 cells and human Raji cells die within 48 and 96 h of incubation in iron-deficient medium, respectively. On the contrary, mouse EL4 cells and human HeLa cells are completely resistant to the induction of death under the same experimental arrangement. Deoxyribonucleic acid fragmentation analysis by agarose gel electrophoresis as well as flow cytometric analysis after propidium iodide staining detected in 38C13 and Raji cells, but not in EL4 and HeLa cells, changes characteristic to apoptosis. The 38C13 cells, sensitive to iron deprivation, also displayed a similar degree of sensitivity to apoptosis induction by thiol deprivation (achieved by 2-mercaptoethanol withdrawal from the culture medium) as well as by rotenone (50 nM), hydroxyurea (50 microM), methotrexate (20 nM), and doxorubicin (100 nM). Raji cells shared with 38C13 cells a sensitivity to rotenone, methotrexate, doxorubicin, and, to a certain degree, to hydroxyurea. However, Raji cells were completely resistant to thiol deprivation. EI4 and HeLa cells, resistant to iron deprivation, also displayed a greater degree of resistance to most of the other apoptotic stimuli than did their sensitive counterparts. We conclude that some tumor cells in vitro are sensitive to apoptosis induction by iron deprivation, while other tumor cells are resistant. All the tumors found to be sensitive to iron deprivation in this study (four cell lines) are of hematopoietic origin. The mechanism of resistance to apoptosis induction by iron deprivation differs from the mechanism of resistance to thiol deprivation.  相似文献   

17.
Carcinoembryonic antigen (CEA) expression has been shown to protect cancer cell lines from apoptosis and anoikis. The aim of this study was to further elucidate the role of CEA expression on resistance to anticancer drugs in human colorectal cancer (CRC). We transfected CEA negative CRC cell line SW742 as well as CHO cells to overexpress CEA and their chemoresistance were assessed by MTT assay. In comparison to the parental cell lines, transfected cells had significantly increased resistance to 5-fluorouracil (5-FU). The results also showed a direct correlation between the amount of cellular CEA protein and 5-FU resistance in CEA expressing cells. We found no significant difference in sensitivity to cisplatin and methotrexate between CEA-transfected cells and their counter parental cells. We also compared the association between CEA expression and chemoresistance of 4 CRC cell lines which differed in the levels of CEA production. The CEA expression levels in monolayer cultures of these cell lines did not correlate with the 5-FU resistance. However, 5-FU treatment resulted in the selection of sub-populations of resistant cells that displayed increased CEA expression levels by increasing drug concentration. We analyzed the effect of 5-FU in a 3D multicellular culture generated from the two CRC cell lines, LS180 and HT29/219. Compared with monolayer culture, CEA production and 5-FU resistance in both cell lines were stimulated by 3D growth. In comparison to the 3D spheroids of parental CHO, we observed a significantly elevated 5-FU resistance in 3D culture of the CEA-expressing CHO transfectants. Our findings suggest that the CEA level may be a suitable biomarker for predicting tumor response to 5-FU-based chemotherapy in CRC.  相似文献   

18.
A murine P388 leukemia line fully resistant to clofarabine was obtained after only two courses of intraperitoneal treatment (three times a day for nine consecutive days). The resistance was stable for at least 13 weeks without treatment. The subline was as sensitive to 5-fluorouracil, methotrexate, cyclophosphamide, cisplatin, melphalan, BCNU, doxorubicin, etoposide, irinotecan, vincristine, and docetaxel as was the parental P388/0 line but was cross-resistant to five antimetabolites [palmO-ara-C, 4'-thio-ara-C, fludarabine phosphate, cladribine, and gemcitabine-all of which require deoxycytidine kinase for activation] and paclitaxel. The subline had less than 1% of the deoxycytidine kinase activity in comparison to P388/0.  相似文献   

19.
H2Oe12 is a mutant HeLa cell line selected for resistance to the toxicity of a chimeric protein conjugate composed of epidermal growth factor (EGF) and the toxic A chain of ricin (RTA). ET-28 is a mutant KB cell line selected for resistance to the toxicity of a chimeric protein conjugate composed of EGF and Pseudomonas exotoxin (PE). In this report we describe the presence or absence, in these mutants, of cross-resistance to the two toxic conjugates and the effects of ammonium chloride, leupeptin, and adenovirus cotreatments on toxin efficacies. ET-28 cells, the EGF-PE-resistant cells, are resistant to both EGF-PE and EGF-RTA. In contrast, H2Oe12 cells, the EGF-RTA-resistant cells, are as sensitive to EGF-PE toxicity as are their parent HeLa cells. Ammonium chloride cotreatment substantially reduces the resistance of H2Oe12 cells to EGF-RTA but has little or no effect on the resistance of ET-28 cells to either EGF-RTA or EGF-PE. Leupeptin has no effect on the toxicity of either chimeric conjugate on any of the four cell lines, effect on the toxicity of either chimeric conjugate on any of the four cell lines, despite its demonstrated ability to inhibit cellular degradation of EGF. In contrast, adenovirus cotreatment enhances the toxicity of EGF-RTA and EGF-PE on all cells tested, and completely nullifies the relative resistance of H2Oe12 and ET-28 cells to these toxic conjugates. H2Oe12 and ET-28 cells appear to be altered in distinct, possibly endosomal, functions.  相似文献   

20.
The cellular pharmacology of two pairs of cis and trans platinum complexes has been studied in three human ovarian carcinoma cell lines, a parental relatively cisplatin-sensitive line (CH1), a subline possessing acquired cisplatin resistance (3-fold; CH1cisR) and an intrinsically cisplatin resistant line (13-fold; SKOV-3). Growth inhibition studies showed that both JM335 [trans ammine (cyclohexylaminedichloro dihydroxo) platinum(IV)] and its platinum(II) dichloro homolog JM334 were relatively less cross-resistant against both acquired and intrinsic cisplatin resistant cells. In contrast, resistance circumvention was not apparent in these cell lines with their cis isomeric counterparts (JM149 for JM335 and JM118 for JM334). The trans compound JM335 was more potent than its cis isomer against all three cell lines. There was no clear correlation between intracellular accumulation following 2 h exposure to each compound and resulting DNA platination or growth inhibition. The selective activity of the trans platinum complexes against the SKOV-3 cell line correlated with a deficiency in the repair of adducts within a fragment of the N-ras gene induced by trans compounds whereas adducts induced by the cis counterparts, and cisplatin, were repaired. The CH 1 parental line appeared repair deficient at the gene-specific level to adducts induced by both cis (including cisplatin) and trans compounds. Resistance in CH1cisR was associated with a lack of gene-specific repair of lesions formed by JM118 and JM149. All four compounds induced apoptosis in all three cell lines, as measured by fluorescent microscopy and field inverted gel electrophoresis, although the kinetics of apoptosis was markedly faster for the trans versus cis compounds. In summary, the trans platinum complexes JM335 and JM334 possess unique cellular properties compared to their cis counterparts particularly with respect to gene specific repair of DNA adducts and the rate of induction of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号