首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Edge effects are among the primary mechanisms by which forest fragmentation can influence the link between biodiversity and ecosystem processes, but relatively few studies have quantified these mechanisms in temperate regions. Carbon storage is an important ecosystem function altered by edge effects, with implications for climate change mitigation. Two opposing hypotheses suggest that aboveground carbon (AGC) stocks at the forest edge will (a) decrease due to increased tree mortality and compositional shifts towards smaller, lower wood density species (e.g., as seen in tropical systems) or, less often, (b) increase due to light/temperature-induced increases in diversity and productivity. We used field-based measurements, allometry, and mixed models to investigate the effects of proximity to the forest edge on AGC stocks, species richness, and community composition in 24 forest fragments in southern Quebec. We also asked whether fragment size or connectivity with surrounding forests altered these edge effects. AGC stocks remained constant across a 100 m edge-to-interior gradient in all fragment types, despite changes in tree community composition and stem density consistent with expectations of forest edge effects. We attribute this constancy primarily to compensatory effects of small trees at the forest edge; however, it is due in some cases to the retention of large trees at forest edges, likely a result of forest management. Our results suggest important differences between temperate and tropical fragments with respect to mechanisms linking biodiversity and AGC dynamics. Small temperate forest fragments may be valuable in conservation efforts based on maintaining biodiversity and multiple ecosystem services.  相似文献   

2.
A first analysis of the stability of trophic structure following tropical forest fragmentation was performed in an experimentally fragmented tropical forest landscape in Central Amazonia. A taxonomically and trophically diverse assemblage of 993 species of beetles was sampled from 920 m2 of leaf litter at 46 sites varying in distance from forest edge and fragment area. Beetle density increased significantly towards the forest edge and showed non-linear changes with fragment area, due to the influx of numerous disturbed-area species into 10 ha and 1 ha fragments. There was a marked change in species composition with both decreasing distance from forest edge and decreasing fragment area, but surprisingly this change in composition was not accompanied by a change in species richness. Rarefied species richness did not vary significantly across any of the sites, indicating that local extinctions of deep forest species were balanced by equivalent colonization rates of disturbed-area species. The change in species composition with fragmentation was non-random across trophic groups. Proportions of predator species and xylophage species changed significantly with distance from forest edge, but no area-dependent changes in proportions of species in trophic groups were observed. Trophic structure was also analysed with respect to proportions of abundance in six trophic groups. Proportions of abundance of all trophic groups except xylomycetophages changed markedly with respect to both distance from forest edge and fragment area. Local extinction probabilities calculated for individual beetle species supported theoretical predictions of the differential susceptibility of higher trophic levels to extinction, and of changes in trophic structure following forest fragmentation. To reduce random effects due to sampling error, only abundant species (n = 46) were analysed for extinction probabilities, as defined by absence from samples. Of these common species, 27% had significantly higher probabilities of local extinction following fragmentation. The majority of these species were predators; 42% of all abundant predator species were significantly more likely to be absent from samples in forest fragments than in undisturbed forest. These figures are regarded as minimum estimates for the entire beetle assemblage because rarer species will inevitably have higher extinction probabilities. Absolute loss of biodiversity will affect ecosystem process rates, but the differential loss of species from trophic groups will have an even greater destabilizing effect on food web structure and ecosystem function.  相似文献   

3.
S. MANU  W. PEACH  & W. CRESSWELL 《Ibis》2007,149(2):287-297
Almost nothing is known of the effects of forest fragmentation on bird diversity within the heavily degraded and fragmented forest remnants in West Africa. We examined the effects of edge, fragment size and isolation on bird species richness in southwestern Nigeria where forest fragmentation is pronounced. In total, 122 km of line transects were used to survey birds and vegetation within 45 forest patches between January 2000 and March 2002: 197 species were recorded. Avian species number and total counts in forest patches were unrelated to fragment area (within the observed range of 14–445 ha), but were negatively influenced by degree of isolation and increasing distance from the edge. As the total area of forested land within 15 km of a patch fell from 4 to 0%, so 21% of species were lost. In total, six and zero species (of 154 recorded more than once) were consistently recorded in the larger and smaller forest fragments, respectively, and four and two bird species were consistently recorded in unisolated and isolated forest fragments, respectively, suggesting that the addition of ‘edge’ species did not compensate for loss of species sensitive to fragmentation. Diversity index was not affected by either fragment area or degree of isolation, but decreased with distance from the edge. When individual species counts were considered, 68% of species (n = 62) showed no significant effect of distance to edge. Of those 20 species which showed an effect, 12 were less common close to the edge. Most species (65%) did not respond significantly to increasing isolation but of those 22 species that did, 20 were less common in more isolated fragments. Ninety‐seven per cent of species showed no significant response to area. As avian diversity and species composition, but not species number, were apparently insensitive to forest fragmentation, our findings suggest that fragmentation reduces the probability of occurrence of a wide range of West African bird species, rather than a subset of fragmentation‐sensitive species. The greater apparent sensitivity of present‐day West African forest bird communities to fragmentation rather than patch size might reflect previous extinctions of area‐sensitive species. Minimizing further forest fragmentation might be the most effective means of conserving avian diversity in current West African landscapes where most remaining forest patches are small (i.e. < 500 ha).  相似文献   

4.
Abstract The conservation of biodiversity is dependent on protecting ecosystem‐level processes. We investigated the effects of fragment size and habitat edge on the relative functioning of three ecological processes – decomposition, predation and regeneration of trees – in small Afromontane forests in KwaZulu‐Natal, South Africa. Ten sampling stations were placed in each of four forest categories: the interior of three large indigenous forest fragments (100 m from the edge), the edges of these large fragments, 10 small indigenous fragments (<1 ha) and 10 small exotic woodlands (<0.5 ha). Fragment size and edge effects did not affect the abundance of the amphipod Talitriator africana, a litter decomposer, and overall dung beetle abundance and species richness significantly. Bird egg predation was marginally greater at large patch edges compared with the other forest categories, while seed predation did not differ among forest categories. Tree seedling assemblage composition did not differ significantly among large patch interiors and edges, and small indigenous fragments. Sapling and canopy assemblage composition each differed significantly among these three indigenous forest categories. Thus, while tree recruitment was not negatively affected by patch size or distance from the edge, conditions in small fragments and at edges appear to affect the composition of advanced tree regeneration. These ecological processes in Afromontane forests appear to be resilient to fragmentation effects. We speculate that this is because the organisms in these forests have evolved under fragmented conditions. Repeated extreme changes in climate and vegetation over the Pleistocene have acted as significant distribution and ecological extinction filters on these southern hemisphere forest biota, resulting in fauna and flora that are potentially resilient to contemporary fragmentation effects. We argue that because small patches and habitat edges appear to be ecologically viable they should be included in future conservation decisions.  相似文献   

5.
Aim Few studies have explicitly examined the influence of spatial attributes of forest fragments when examining the impacts of fragmentation on woody species. The aim of this study was to assess the diverse impacts of fragmentation on forest habitats by integrating landscape‐level and species‐level approaches. Location The investigation was undertaken in temperate rain forests located in southern Chile. This ecosystem is characterized by high endemism and by intensive recent changes in land use. Method Measures of diversity, richness, species composition, forest structure and anthropogenic disturbances were related to spatial attributes of the landscape (size, shape, connectivity, isolation and interior forest area) of forest fragments using generalized linear models. A total of 63 sampling plots distributed in 51 forest fragments with different spatial attributes were sampled. Results Patch size was the most important attribute influencing different measures of species composition, stand structure and anthropogenic disturbances. The abundance of tree and shrub species associated with interior and edge habitats was significantly related to variation in patch size. Basal area, a measure of forest structure, significantly declined with decreasing patch size, suggesting that fragmentation is affecting successional processes in the remaining forests. Small patches also displayed a greater number of stumps, animal trails and cow pats, and lower values of canopy cover as a result of selective logging and livestock grazing in relatively accessible fragments. However, tree richness and β‐diversity of tree species were not significantly related to fragmentation. Main conclusions This study demonstrates that progressive fragmentation by logging and clearance is associated with dramatic changes in the structure and composition of the temperate forests in southern Chile. If this fragmentation process continues, the ability of the remnant forests to maintain their original biodiversity and ecological processes will be significantly reduced.  相似文献   

6.
In this study, we compared ground-dwelling beetle assemblages (Coleoptera) from a range of different oak fragments and surrounding conifer plantations to evaluate effects of forest size and surrounding matrix habitat in a temperate forest of north China. During 2000, beetles were sampled via pitfall traps within two large oak fragments (ca. 2.0-4.0 ha), two small oak fragments (ca. 0.2-0.4 ha) and two surrounding matrices dom- inated by pine plantations (〉4 ha) in two sites of different aspects. Overall, no significantly negative effects from forest patch size and the surrounding matrix habitat were detected in total species number and abundance of ground-dwelling beetles. However, compared with small oak patches or pine plantations, more species were associated with an affinity for at least one large oak patch of the two aspects. Multivariate regression trees showed that the habitat type better determined the beetle assemblage structure than patch size and aspect, indicating a strong impact of the surrounding matrix. Linear mixed models indicated that species richness and abundance of all ground-dwelling beetles or beetle families showed different responses to the selected environmental variables. Our results suggest that more disturbed sites are significantly poorer in oak forest specialists, which are usually more abundant in large oak fragments and decrease in abundance or disappear in small fragments and surrounding matrix habitats. Thus, it is necessary to preserve a minimum size of forest patch to create conditions characteristic for forest interior, rather than the more difficult task of increasing habitat connectivity.  相似文献   

7.
I compared dung beetle communities and assessed some of their functional effects (dung removal, seed burial, seedling establishment) in continuous forest with those in 1-ha and 10-ha forest fragments in Central Amazonia. I followed the fate of seeds until seedling establishment for three native tree species, using clean seeds and seeds surrounded by dung. The 1-ha fragments had half the number of dung beetle species captured in continuous forest and in 10-ha fragments. The continuous forest sites and the 1-ha fragments had similar number of individuals, but in the 10-ha fragments dung beetles were twice as abundant. Mean beetle size increased with increasing forest area. Dung removal and seed burial rates were higher in continuous forest than in forest fragments. Seed predation rates were higher in the forest fragments. In all sites, the proportion of seedlings established from seeds surrounded by dung vs clean seeds was the same, and it was the same in continuous forest vs fragments. When comparing seeds that remained on the forest floor with seeds buried by dung beetles, a higher percentage of seedlings established from the latter. Conservation programs that aim to maintain the regeneration ability of forest fragments must incorporate all the important components involved in seedling establishment; in Central Amazonia these include dung beetles as secondary dispersers. It is important that studies start measuring directly not only the first-order effects of forest fragmentation on species, but also the higher-order functional effects.  相似文献   

8.
The marked negative impact of habitat fragmentation and the edge effect on many populations of bird species is a recent major concern in conservation biology. Here, we focus on the edge effect in different sized forest patches in Central European farmland. In particular, we tested whether the distribution of mammalian mesopredators is related to fragment size and distance to habitat edge, and whether the contribution of these factors is additive or interactive. To assess fine-scale utilization of forest edges, we established transects of four scent stations at different distances from forest edges into the interior (0, 25, 50, 100 m) in 146 forest fragments of variable patch size (3.2–5099.6 ha) from May to June, 2008–2009. This large sample size allowed us to perform detailed analyses separately for all detected species. Our findings confirm that mammalian mesopredators strongly prefer habitat edges and small forest fragments. The probability of occurrence tended to decrease with increasing distance from the edge for all seven carnivore species detected. The carnivores’ occurrence was also negatively correlated with forest fragment area. All detected species tended to prefer small fragments, with the exception of the Eurasian badger (showing the reverse but non-significant pattern) and the red fox (no effect of fragment size). In addition, the non-significant interaction between fragment size and distance to edge suggests that both of these factors contribute independently and additively to mesopredator-mediated effects on biota in a fragmented landscape.  相似文献   

9.
Habitat fragmentation due to urbanization is increasing rapidly worldwide. Although patch area and edge effect are both important determinants of species diversity and the number of individuals in fragmented landscapes, studies that tested interaction between two effects were limited. Here we examined the interaction between area and edge effects on species richness and the number of individuals of carabids in highly fragmented forests in Tokyo, central Japan. We surveyed carabids in each of 26 forest patches (1.1–121.6 ha) using pitfall traps set in both edge and interior zones. First, we correlated the edge-to-interior differences of both species richness and the number of individuals with patch area. Second, we examined the interaction between patch area and distance to the edge on species richness and the number of individuals using generalized linear models. We found a significant decrease in carabid species richness and the number of individuals in edge zones. The edge-to-interior differences in both species richness and the number of individuals were positively correlated with patch area. Model selection revealed the evident interaction effects between patch area and distance to the edge: higher number of individuals was predicted in only large interior zones. Our results indicated that carabid beetle assemblages were influenced by the interaction between area and edge effects. Thus, in urban areas where small forest remnants dominate, circularizing the shape of the forest patches to maximize the core areas may be the most feasible and realistic means to preserve biodiversity.  相似文献   

10.
We investigated the effects of forest fragmentation on bird assemblages in an Amazonian savannah landscape with forest fragments that have been isolated for more than 100 years. The study was conducted in areas surrounding the village of Alter do Chão (2°31′S, 55°00′W), Santarém, Brazil. Bird surveys and measurements of tree density were undertaken in 25 areas, with 19 plots in forest fragments of different sizes and six in an area of continuous forest. Data on forest‐fragment size, perimeter, and isolation were obtained from a georeferenced satellite image. Variation in number of bird species recorded per plot was not related to vegetation structure (tree density). The number of bird species recorded per plot increased significantly only with fragment area, but was not influenced by fragment shape or degree of isolation, even when considering species from the savannah matrix in the analysis. Fragments had fewer rare species. Multivariate ordination analyses (multiple dimensional scaling, [MDS]) indicated that bird species composition changed along a gradient from small to large forest fragments and continuous‐forest areas. In the Amazonian savannah landscapes of Alter do Chão, the organization and composition of bird assemblages in forest fragments are affected by local long‐term forest‐fragmentation processes. Differences in the number of bird species recorded per plot and assemblage composition between forest fragments and continuous forest were not influenced by forest structure, suggesting that the observed patterns in species composition result from the effects of fragmentation per se rather than from preexisting differences in vegetation structure between sites. Nevertheless, despite their long history of isolation, the forest fragments still preserve a large proportion (on average 80%) of the avifauna found in continuous‐forest areas. The fragments at Alter do Chão are surrounded by natural (rather than planted) grassland, with many trees in the savannah matrix and the landscape has vast areas covered by forest, which may have helped to ameliorate the influences of forest fragmentation.  相似文献   

11.
Xishuangbanna, situated in the northern margin of the tropical zone in Southeast Asia, maintains large areas of tropical rain forest and contains rich biodiversity. However, tropical rain forests are being rapidly destroyed in this region. This paper analyzed spatial and temporal changes of forest cover and the patterns of forests fragmentation in Xishuangbanna by comparing classified satellite images from 1976, 1988 and 2003 using GIS analyses. The patterns of fragmentation and the effects of edge width were examined using selected landscape indices. The results show that forest cover declined from 69% in 1976 to less than 50% in 2003, the number of forests fragments increased from 6,096 to 8,324, and the mean patch size declined from 217 to 115 ha. It was found that fragment size distribution was strongly skewed towards small values, and fragment size and internal habitat differ strongly among forest types: less fragmented in subtropical evergreen broadleaf forest, but severe in forests that are suitable for agriculture (such as tropical seasonal rain forest and mountain rain forest). Due to fragmentation, the edge width was smaller in 2003 than that in 1976 when the total area of edge habitat exceeded core habitat in different forest types. The core area of tropical seasonal rain forest was smallest among main forest types at any edge width. Fragmentation was severe within 12.5-km buffers around roads. The current forest cover within reserves in Xishuangbanna was comparatively large and less fragmented. However, the tropical rain forest has been degraded inside reserves. For conservation purposes, the approaches to establish forest fragments networks by corridors and stepping stone fragments are proposed. The conservation efforts should be directed first toward the conservation of remaining tropical rain forests.  相似文献   

12.
This study was conducted in the Chiapas Highlands, a tropical mountain region where traditional agricultural practices have resulted in a mosaic landscape of forest fragments embedded in a matrix of secondary vegetation and crop fields. The question addressed was how may woody species richness be affected by forest fragment attributes derived from traditional land-use patterns. Species inventories of total woody species, canopy and understorey trees, and shrubs were obtained in 22 forest fragments (5 ha). Multiple regression analyses were applied to examine the effects of size, matrix, isolation and shape of the forest fragments on richness of these species guilds. Fragment size was correlated with shape (r = 0.75) and isolation (r = –0.69), and isolation was correlated with shape (r = –0.75). Total species richness, and number of shrubs and understorey trees in fragments were related to isolation; moreover, additive effects of fragment shape were found for shrubs. The number of canopy species was not related to any fragment variable. Matrix did not help to explain species richness, possibly due to the landscape structure created by the traditional land-use patterns. In addition to size and isolation, we point out the need of considering shape and matrix as additional fragmentation attributes, along with social and economic factors, if we are ever going to be successful in our management and conservation actions.  相似文献   

13.
Aim To analyse the effects of forest fragmentation on ant communities in an Amazonian landscape that has been fragmented for over a century. Location The region surrounding the village of Alter do Chão in the Brazilian Amazonian state of Pará (2°30′ S, 54°57′ W). Methods Collection of ants and measurements of tree density were performed along transects established in eight sites in continuous forest and in 24 forest fragments surrounded by savanna vegetation. Data on size, perimeter, and degree of isolation (distance to continuous forest and distance to nearest area of forest > 5 ha) of each fragment were obtained from a georeferenced Landsat image of the study area. Results There were significant differences in species richness and composition between fragments and continuous forest, and these differences were not related to intersite variation in vegetation structure (tree density). Fragments supported fewer ant species per plot, and these species tended to represent a nested subset of those found in continuous forests. Fragments had significantly fewer rare species and fewer ant genera. However, fragments and continuous forest had similar numbers of species that also occur in the savanna matrix (i.e. that are not forest specialists). Multiple linear regression analyses indicated that species richness and composition in the fragments are significantly affected by fragment area, but not by fragment shape and degree of isolation. More species were found in larger fragments. Main conclusions Forest fragmentation influences the organization of ant communities in Amazonian savanna/forest landscapes. Forest fragments harboured, on average, 85% of the species found in continuous forest. That these fragments, despite their long history of isolation, support a relatively large complement of the species found in continuous forest is surprising, especially given that in some recently fragmented landscapes the proportion of species surviving in the fragments is lower. Differences in inter‐fragment distance and type of matrix between Alter do Chão and these other landscapes may be involved. The fact that fragments at Alter do Chão are surrounded by a natural (rather than an anthropogenic) habitat, and that most of them are less than 300 m from another forest area, may have helped to ameliorate the adverse effects of forest fragmentation.  相似文献   

14.
Loss and fragmentation of natural ecosystems are widely recognized as the most important threats to biodiversity conservation, with Neotropical dry forests among the most endangered ecosystems. Area and edge effects are major factors in fragmented landscapes. Here, we examine area and edge effects and their interaction, on ensembles of arthropods associated to native vegetation in a fragmented Chaco Serrano forest. We analyzed family richness and community composition of herbivores, predators, and parasitoids on three native plant species in 12 fragments of varying size and at edge/interior positions. We also looked for indicator families by using Indicator Species Analysis. Loss of family richness with the reduction of forest fragment area was observed for the three functional groups, with similar magnitude. Herbivores were richer at the edges without interaction between edge and area effects, whereas predators were not affected by edge/interior position and parasitoid richness showed an interaction between area and position, with a steeper area slope at the edges. Family composition of herbivore, predator, and parasitoid assemblages was also affected by forest area and/or edge/interior situation. We found three indicator families for large remnants and five for edges. Our results support the key role of forest area for conservation of arthropods taxonomic and functional diversity in a highly threatened region, and emphasize the need to understand the interactions between area and edge effects on such diversity.  相似文献   

15.
Passive forest restoration can buffer the effects of habitat loss on biodiversity. We acoustically surveyed aerial insectivorous bats in a whole-ecosystem fragmentation experiment in the Brazilian Amazon over a 2-year period, across 33 sites, comprising continuous old-growth forest, remnant fragments, and regenerating secondary forest matrix. We analyzed the activity of 10 species/sonotypes to investigate occupancy across habitat types and responses to fragment size and interior-edge-matrix (IEM) disturbance gradients. Employing a multiscale approach, we investigated guild (edge foragers, forest specialists, flexible forest foragers, and open space specialists) and species-level responses to vegetation structure and forest cover, edge, and patch density across six spatial scales (0.5–3 km). We found species-specific habitat occupancy patterns and nuanced responses to fragment size and the IEM disturbance gradient. For example, Furipterus horrens had lower activity in secondary forest sites and the interior and edge of the smallest fragments (1 and 10 ha) compared to continuous forest, and only two species (Pteronotus spp.) showed no habitat preference and no significant responses across the IEM and fragment size gradients. Only the Molossus sonotype responded negatively to vegetation structure. We uncovered no negative influence of forest cover or edge density at guild or species-level. Our results indicate that reforestation can buffer the negative effects of fragmentation and although these effects can still be detected in some species, generally aerial insectivorous bats appear to be in recovery after 30 years of passive forest restoration. Our findings reinforce the need to protect regenerating forests while conserving vast expanses of old-growth forest.  相似文献   

16.
In agricultural landscapes in central Europe, species richness of the herbaceous plant community may be compromised by processes associated with forest fragmentation, habitat loss, and management practices. We examined variability in species richness and composition of the herbaceous layer in 229 plots located in 23 forest fragments (0.1 to 255 ha), in a representative upland agricultural landscape in central Bohemia, in relation to the most important site environmental factors, edge effects, and site history. The influence of environmental factors on the composition of vegetation in the herb layer was evaluated using generalized additive models, which enabled us to analyze highly non-linear and non-monotonic relationships. Total species richness and number of red-listed and ancient forest species were significantly influenced by type of forest vegetation, light quality, soil pH, slope aspect, and distance from the forest edge. Implications of the significant explanatory variables corresponded well to previous findings, with the exception of distance from the forest edge, for which we found a positive relationship with species richness for distances up to 200 m toward the forest interior. Plant species with low colonization ability occupied plots with increasing frequency from edge to forest interior, while fast-colonizing species showed the opposite trend. Apart from the edge effect, forest continuity should be considered for its important contribution to the richness of ancient forest and red-listed species, whereas the effect of forest fragment size appeared to be generally weak. These results do not negate the importance of large forest fragments for the maintenance of herb layer species richness, but specifically emphasize the essential contribution of the core habitats of these forests. In summary, we showed that the negative effects of habitat fragmentation on the richness of ancient forest and red-listed species and on herb layer species in total can be largely attributed to either the edge effect itself or to aggregate effects of forest edge and forest continuity.  相似文献   

17.
South American subtropical dry forests are highly threatened by fragmentation. Despite considerable research efforts aimed at predicting ecosystem alterations due to this driver of global change, we still need to deal with general principles to improve our ability to predict the impact of fragmentation. Our work is one of the few studies that analyse the relationship between forest fragmentation and decomposition. In 12 remnants of Chaco Serrano forest in Central Argentina we tested if decomposition rates of a common leaf-litter substrate varied with fragment size and between the forest edge and interior. Decomposition declined with fragment size, with no significant effects of location (edge/interior) or interaction between the two components of fragmentation. Our results suggest that in situ conditions for decomposition may change as a consequence of forest fragmentation, specifically as a result fragment size. This may lead to impaired nutrient recycling in smaller forest remnants.  相似文献   

18.
Nest predation is widely regarded as a major driver underlying the population dynamics of small forest birds. Following forest fragmentation and the subsequent invasion by species from non-forested landscape matrices, shifts in predator communities may increase nest predation near forest edges. However, effects of human-driven habitat change on nest predation have mainly been inferred from studies with artificial nests, despite being regarded as poor surrogates for natural ones. We studied variation in predation rates, and relationships with timing of breeding and characteristics of microhabitats and fragments, on natural white-starred robin Pogonocichla stellata nests during three consecutive breeding seasons (2004–2007) in a Kenyan fragmented cloud forest. More than 70% of all initiated nests were predated during each breeding season. Predation rates nearly quadrupled between the earliest and the latest nests within a single breeding season, increased with distance to the forest edge, and decreased with the edge-to-area ratio of forest fragments. These spatial relationships oppose the traditional perception of edge and fragmentation effects on nest predation, but are in line with results from artificial nest experiments in other East African forests. In case of inverse edge and fragmentation effects on nest predation, such as shown in this study, species that tolerate edges for breeding may be affected positively, rather than negatively, by forest fragmentation, while the opposite can be expected for species restricted to the forest interior. The possibility of inverse edge effects, and its conservation implications, should therefore be taken into account when drafting habitat restoration plans.  相似文献   

19.
伊朗稀疏橡木林片段对草本植物物种多样性和土壤特性的边缘影响 温带和热带森林中的森林边缘现象已经得到了很好的研究,但在稀疏的橡木林片段中的相关研究却较为缺乏。本文研究了稀疏橡木林片段对植物物种多样性和土壤特性的边缘影响。本研究沿着伊朗克尔曼沙赫省3个小型(<10 ha)和3个大型(>10 ha)橡木林片段的3个横断面收集了从边缘到内部的相 关数据,测量了0(森林边缘)、25、50、100和150 m处的草本植物(高度<0.5 m)和土壤特性。使用香农指数量化了物种多样性,使用稀疏标准化方法比较了两个大小不同片段中的物种丰富度,并应用了非度量多维测度排序研究了物种组成的变化。通过随机化测试估算了边缘影响的距离,并利用Tukey HSD事后检验法的广义线性混合模型评估了距边缘距离和片段大小对多样性和土壤特性的影响。研究结果表明,大小片段边缘具有较高的物种丰富度、多样性和均匀度,而大片段边缘的土壤氮和有机碳含量则较内部更低(边缘50 m范围内的变化最大)。大小片段的物种组成、土壤有机碳和氮总量都存在显 著差异。本研究关于这些稀疏森林对草本植物和土壤特性产生显著边缘影响的发现,对于边缘研究,尤其是边缘和草本植物的相关研究具有重大贡献。  相似文献   

20.
Species assemblages in disturbed habitats vary as a function of the interaction between species requirements and the spatial configuration of the habitat. There are many reports accounting for the presence of howler monkeys in fragments where other mammals are absent, suggesting that they are more resilient. In the present study we explored this idea and predicted that if howler monkeys were more resilient to habitat loss and fragmentation than other mammals, mammal assemblages in fragments occupied by howler monkeys should include fewer species with decreasing amount of habitat (smaller fragment size and less habitat in the landscape) and increasing number of forest fragments. We explored these relationships by additionally considering the feeding and life habits of mammal species, as well as the isolation and proximity of each fragment to human settlements and roads. We sampled the presence of mammals in five fragments occupied by black howler monkeys (Alouatta pigra) in the Mexican state of Campeche. Through direct sights performed during 240 h in each fragment, we observed 23 species. At the landscape scale, higher fragmentation was associated with a decrease in herbivores, omnivores and total number of species. At the fragment scale semiarboreal, omnivore, and total number of species increased with increasing fragment size. This study supports the idea that howler monkeys are more resilient to forest loss and fragmentation than other native mammals, and our exploratory analyses suggest that the specific mammal assemblages that are found in fragments are related to both landscape and fragment scale spatial attributes, as well as with species-specific characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号