首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D. A. Campbell  S. Fogel 《Genetics》1977,85(4):573-585
Experiments designed to characterize the association between disomic chromosome loss and centromere-adjacent mitotic recombination were performed. Mitotic gene convertants were selected at two heteroallelic sites on the left arm of disomic chromosome III and tested for coincident chromosome loss. The principal results are: (1) Disomic chromosome loss is markedly enhanced (nearly 40-fold) over basal levels among mitotic gene convertants selected to arise close to the centromere; no such enhancement is observed among convertants selected to arise relatively far from the centromere. (2) Chromosome loss is primarily associated with proximal allele conversion at the centromere-adjacent site, and many of these convertants are reciprocally recombined in the adjacent proximal interval. (3) Partial aneuploid exceptions provisionally identified as carrying left arm telocentrics have been found. A testable model is proposed suggesting that centromere involvement in genetic recombination may precipitate segregational disfunction leading to mitotic chromosome loss.  相似文献   

2.
D. A. Campbell  S. Fogel    K. Lusnak 《Genetics》1975,79(3):383-396
Experiments designed to characterize the incidence of mitotic chromosome loss in a yeast disomic haploid were performed. The selective methods employed utilize the non-mating property of strains disomic for linkage group III and heterozygous at the mating type locus. The principal findings are: (1) The frequency of spontaneous chromosome loss in the disome is of the order 10-4 per cell; this value approximates the frequency in the same population of spontaneous mitotic exchange resulting in homozygosity at the mating type locus. (2) The recovered diploids are pure clones, and thus represent unique events in the disomic haploid. (3) Of the euploid chromosomes recovered after events leading to chromosome loss, approximately 90% retain the parental marker configuration expected from segregation alone; however, the remainder are recombinant for marker genes, and are the result of mitotic exchanges in the disome, especially in regions near the centromere. The recombinant proportion significantly exceeds that expected if chromosome loss and mitotic exchange in the disome were independent events. The data are consistent with a model proposing mitotic nondisjunction as the event responsible for chromosome loss in the disomic haploid.  相似文献   

3.
Diploid strains of the yeast Saccharomyces cerevisiae homozygous for a recessive chromosome loss mutation (chl) exhibit a high degree of mitotic instability. Cells become monosomic for chromosome III at a frequency of approximately one percent of all cell divisions. Chromosome loss at this high frequency is also found for chromosome I, and at lesser frequencies for chromosomes VIII and XVI. In contrast, little or no chromosome loss is found for six other linkage groups tested (II, V, VI, VII, XI and XVII). The chl mutation also induces a ten-fold increase in both intergenic and intragenic mitotic recombination on all ten linkage groups tested. The chl mutation does not cause an increase in spontaneous mutations, nor are mutant strains sensitive to UV or γ irradiation. The effects of chl during meiosis are observed primarily in reduced spore viability. A decrease in chromosome III linkage relationships is also found.  相似文献   

4.
L. P. Wakem  F. Sherman 《Genetics》1990,125(2):333-340
Yeast 2-microns plasmids were integrated near the centromere of a different chromosome in each of 16 cir0 mapping strains of Saccharomyces cerevisiae. The specific chromosomes containing the integrated 2-microns plasmid DNA were lost at a high frequency after crossing the cir0 strains to cir+ strains. A recessive mutation in a cir+ strain can then be easily assigned to its chromosome using this set of mapping strains, since the phenotype of the recessive mutation will be manifested only in diploids having the integrated 2-microns plasmid and the unmapped mutation on homologous chromosomes.  相似文献   

5.
Using the chromosome loss-mapping method of Schild and Mortimer, I have mapped several new temperature-sensitive mutations that define five CDC genes. Modified procedures were used to facilitate mapping temperature-sensitive mutations in general, and these modifications are discussed. The mutations were assigned to specific chromosomes by chromosome loss procedures, and linkage relationships were determined subsequently by standard tetrad analysis. Four of the mutations define new loci. The fifth mutation, cdc63-1, is shown to be allelic to previously known mutations in the PRT1 gene.  相似文献   

6.
Rye (Secale cereale L.) possesses many valuable genes that can be used for improving disease resistance, yield and environment adaptation of wheat (Triticum aestivum L.). However, the documented resistance stocks derived from rye is faced severe challenge due to the variation of virulent isolates in the pathogen populations. Therefore, it is necessary to develop desirable germplasm and search for novel resistance gene sources against constantly accumulated variation of the virulent isolates. In the present study, a new wheat-rye line designated as WR49-1 was produced through distant hybridization and chromosome engineering protocols between common wheat cultivar Xiaoyan 6 and rye cultivar German White. Using sequential GISH (genomic in situ hybridization), mc-FISH (multicolor fluorescence in situ hybridization), mc-GISH (multicolor GISH) and EST (expressed sequence tag)-based marker analysis, WR49-1 was proved to be a new wheat-rye 6R disomic addition line. As expected, WR49-1 showed high levels of resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici, Bgt) pathogens prevalent in China at the adult growth stage and 19 of 23 Bgt isolates tested at the seedling stage. According to its reaction pattern to different Bgt isolates, WR49-1 may possess new resistance gene(s) for powdery mildew, which differed from the documented powdery mildew gene, including Pm20 on chromosome arm 6RL of rye. Additionally, WR49-1 was cytologically stable, had improved agronomic characteristics and therefore could serve as an important bridge for wheat breeding and chromosome engineering.  相似文献   

7.
X chromosomes mutagenized with EMS were tested for their effects on the fitness of hemizygous carriers. The tests were carried out in populations in which treated and untreated X chromosomes segregated from matings between males and attached-X females; the populations were maintained for several generations, during which time changes in the frequencies of the treated and untreated chromosomes were observed. From the rates at which the frequencies changed, the fitness effects of the treated chromosomes were determined. It was found that flies hemizygous for a mutagenized chromosome were 1.7% less fit per mM EMS treatment than those hemizygous for an untreated chromosome. Since the same flies were only 0.5% per mM less viable than their untreated counterparts, the total fitness effect of an X chromosome carrying EMS-induced mutants is three to four times greater than its viability effect. By comparing the heterozygous effect of a mutagenized X chromosome on fitness with the corresponding hemizygous effect, the dominance value for the chromosome is estimated to be about 0.25.  相似文献   

8.
利用脉冲电泳(PulsedFieldGelElectrophoresis,PFGE)分析了酵母菌A364a的电泳核型,以5号染色体专一探针确定了该染色体在电泳核型中的位置,以内切酶BamHI对该染色体DNA进行部分酶切后,与整合型载体YIp5连接获得了一个染色体专一的基因文库,其转化子数目超过了理论要求值。从文库中筛选与已知探针有同源性的片段并用内切酶BamHI,EcoRI,HindII,PstI和SalI分析这些插入片段,获得了一个覆盖A364a5号染色体(其长度估计为620kb)9.4%的精细物理图谱。利用边界克隆和菌落杂交将使我们能够对整条染色体进行进一步的“步查”  相似文献   

9.
Yeast artificial chromosome (YAC) clones were ordered for thephysical mapping of rice chromosome 2, the last of the 12 ricechromosomes to be assigned YACs by the Rice Genome ResearchProgram. A total of 128 restriction fragment length polymorphismmarkers and 4 sequence-tagged site (STS) markers located onour high-density genetic map were used for YAC clone landing.By colony/Southern hybridization and polymerase chain reactionscreening, a total of 239 individual YACs were selected fromour YAC library of 6934 clones covering six genome equivalents.The YACs located on the corresponding marker positions in thelinkage map formed 43 contigs and islands and were estimatedto encompass about 50% of the length of rice chromosome 2.  相似文献   

10.
Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB) at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the silent mating locus (HML) on chromosome III in wild–type and mutant yeast strains that contain altered chromosome-tethering interactions. In wild-type yeast cells we find that disruption of the telomere tether does not dramatically change the position of HML with respect to the SPB, in agreement with theoretical predictions. Alternatively, using a mutant strain with a synthetic tether that localizes an HML-proximal site to the nuclear envelope, we find a significant change in the SPB-HML distance, again as predicted by theory. Our study quantifies the importance of tethering at telomeres on the organization of interphase chromosomes in yeast, which has been shown to play a significant role in determining chromosome function such as gene expression and recombination.  相似文献   

11.
K. H. Jones  J. Liu    P. N. Adler 《Genetics》1996,142(1):205-215
The frizzled (fz) gene of Drosophila is essential for the development of normal tissue polarity in the adult cuticle of Drosophila. In fz mutants the parallel array of hairs and bristles that decorate the cuticle is disrupted. Previous studies have shown that fz encodes a membrane protein with seven putative transmembrane domains, and that it has a complex role in the development of tissue polarity, as there exist both cell-autonomous and cell nonautonomous alleles. We have now examined a larger number of alleles and found that 15 of 19 alleles display cell nonautonomy. We have examined these and other alleles by Western blot analysis and found that most fz mutations result in altered amounts of Fz protein, and many also result in a Fz protein that migrates aberrantly in SDS-PAGE. We have sequenced a subset of these alleles. Cell nonautonomous fz alleles were found to be associated with mutations that altered amino acids in all regions of the Fz protein. Notably, the four cell-autonomous mutations were all in a proline residue located in the presumptive first cytoplasmic loop of the protein. We have also cloned and sequenced the fz gene from D. virilis. Conceptual translation of the D. virilis open reading frame indicates that the Fz protein is unusually well conserved. Indeed, in the putative cytoplasmic domains the Fz proteins of the two species are identical.  相似文献   

12.
Joyce A. Mitchell 《Genetics》1977,87(4):763-774
Drosophila melanogaster X chromosomes were mutagenized by feeding males sucrose solutions containing ethyl methanesulfonate (EMS); the concentrations of EMS in the food were 2.5 mM, 5.0 mM, and 10.0 mM. Chromosomes were exposed to the mutagen up to three times by treating males in succeeding generations. After treatment, the effective exposures were 2.5, 5.0, 7.5, 10.0, 15.0, and 30.0 mM EMS. X chromosomes treated in this manner were tested for effects on fitness in both hemizygous and heterozygous conditions, and for effects on viability in hemizygous and homozygous conditions. In addition, untreated X chromosomes were available for study. The viability and heterozygous fitness effects are presented in this paper, and the hemizygous fitness effects are discussed in the accompanying one (MITCHELL and SIMMONS 1977). Hemizygous and homozygous viability effects were measured by segregation tests in vial cultures. For hemizygous males, viability was reduced 0.5 percent per mM EMS treatment; for homozygous females, it was reduced 0.7% per mM treatment. The decline in viability appeared to be a linear function of EMS dose. The viabilities of males and females were strongly correlated. Heterozygous fitness effects were measured by monitoring changes in the frequencies of treated and untreated X chromosomes in discrete generation populations which, through the use of an X-Y translocation, maintained them only in heterozygous condition. Flies that were heterozygous for a treated chromosome were found to be 0.4% less fit per mM EMS than flies heterozygous for an untreated one.  相似文献   

13.
Until recently, little was known of the genetic constitution of the heterochromatic segments of the major autosomes of Drosophila melanogaster . Our previous report described the genetic dissection of the proximal, heterochromatic region of chromosome 2 of Drosophila melanogaster by means of a series of overlapping deficiencies generated by the detachment of compound second autosomes (Hilliker and Holm 1975). Analysis of these deficiencies by inter se complementation, pseudo-dominance tests with proximal mutations and allelism tests with known deficiencies provided evidence for the existence of at least two loci between the centromere and the light locus in 2L and one locus in 2R between the rolled locus and the centromere. These data in conjunction with cytological observations demonstrated that light and rolled and three loci lying between them are located within the proximal heterochromatin of the second chromosome.——The present report describes the further analysis of this region through the induction with ethyl methanesulphonate (EMS) of recessive lethals allelic to the 2L and 2R proximal deficiencies associated with the detachment products. Analysis of the 118 EMS-induced recessive lethals and visible mutations recovered provided evidence for seven loci in the 2L heterochromatin and six loci in the 2R heterochromatin, with multiple alleles being obtained for most sites. Of these loci, one in 2L and two in 2R fall near the heterochromatic-euchromatic junctions of 2L and 2R respectively. None of the 113 EMS lethals behaved as a deficiency, implying that the heterochromatic loci uncovered in this study represent nonrepetitive cistrons. Thus functional genetic loci are found in heterochromatin, albeit at a very low density relative to euchromatin.  相似文献   

14.
Insect endosymbiont genomes reflect massive gene loss. Two Blattabacterium genomes display colinearity and similar gene contents, despite high orthologous gene divergence, reflecting over 140 million years of independent evolution in separate cockroach lineages. We speculate that distant homologs may replace the functions of some eliminated genes through broadened substrate specificity.Obligate symbionts of insects exhibit extreme patterns of genome evolution and include the smallest known bacterial genomes (10, 11, 14). Two recently published sequences of Blattabacterium, the obligate symbiont of cockroaches (7, 16), present the opportunity to analyze genome evolution in an additional symbiont lineage with extreme genome reduction.  相似文献   

15.
Jules O''Rear  Jasper Rine 《Genetics》1986,113(3):517-529
In Saccharomyces cerevisiae, a reciprocal translocation between chromosome II and a linear plasmid carrying a centromere (CEN6) has split chromosome II into two fragments: one, approximately 530 kilobase pairs (kbp) in size, has the left arm and part of the right arm of chromosome II; the other, a telocentric fragment approximately 350 kbp in size, has CEN6 and the rest of the right arm of chromosome II. A cross of this yeast strain with a strain containing a complete chromosome II exhibits a high frequency of precocious centromere separation (separation of sister chromatids during meiosis I) of the telocentric fragment. Precocious centromere separation is not due to the position of the centromere per se, since diploids that are homozygous for both fragments of chromosome II segregate the telocentric fragment with normal meiotic behavior. The precocious centromere separation described here differs from previously described examples in that pairing and synapsis of this telocentric chromosome seem to be normal. One model of how centromeres function in meiosis is that replication of the centromere is delayed until the second meiotic division. Data presented in this paper indicate that replication of the centromere is complete before the first meiotic division. The precocious separation of the centromere described here may be due to improper synapsis of sequences flanking the centromere.  相似文献   

16.
Removal of a telomere from yeast chromosome VII in a strain having two copies of this chromosome often results in its loss. Here we show that there are three pathways that can stabilize this broken chromosome: homologous recombination, nonhomologous end joining, and de novo telomere addition. Both in a wild-type and a recombination deficient rad52 strain, most stabilization events were due to homologous recombination, whereas nonhomologous end joining was exceptionally rare. De novo telomere addition was relatively rare, stabilizing <0.1% of broken chromosomes. Telomere addition took place at a very limited number of sites on chromosome VII, most occurring close to a 35-base pair stretch of telomere-like DNA that is normally approximately 50 kb from the left telomere of chromosome VII. In the absence of the Pif1p DNA helicase, telomere addition events were much more frequent and were not concentrated near the 35-base pair tract of telomere-like DNA. We propose that internal tracts of telomere-like sequence recruit telomerase by binding its anchor site and that Pif1p inhibits telomerase by dissociating DNA primer-telomerase RNA interactions. These data also show that telomeric DNA is essential for the stable maintenance of linear chromosomes in yeast.  相似文献   

17.
18.
Telomere repeat-like sequences at DNA double-strand breaks (DSBs) inhibit DNA damage signaling and serve as seeds to convert DSBs to new telomeres in mutagenic chromosome healing pathways. We find here that the response to seed-containing DSBs differs fundamentally between budding yeast (Saccharomyces cerevisiae) cells that maintain their telomeres via telomerase and so-called postsenescence survivors that use recombination-based alternative lengthening of telomere (ALT) mechanisms. Whereas telomere seeds are efficiently elongated by telomerase, they remain remarkably stable without de novo telomerization or extensive end resection in telomerase-deficient (est2Δ, tlc1Δ) postsenescence survivors. This telomere seed hyper-stability in ALT cells is associated with, but not caused by, prolonged DNA damage checkpoint activity (RAD9, RAD53) compared to telomerase-positive cells or presenescent telomerase-negative cells. The results indicate that both chromosome healing and anticheckpoint activity of telomere seeds are suppressed in yeast models of ALT pathways.  相似文献   

19.

Background

Cancer-testis antigens (CTAs) are potential targets for cancer immunotherapy. Many CTAs are located on the X chromosome and are epigenetically regulated. Loss of X chromosome inactivation (XCI) is observed in breast and ovarian cancers and is thought to be related to the overexpression of CTAs. We investigated the relation between expression of CTAs and loss of XCI in endometrial cancer.

Materials and Methods

We used data generated by The Cancer Genome Atlas Genome Data Analysis Centers and data for Xist knockout mice available at the Gene Expression Omnibus.

Results

The status of XCI was estimated by methylation status, and deletion or gain of the X chromosome. The endometrial cancers were classified into the following three groups: preserved inactivated X chromosome (Xi) (n = 281), partial reactivation of Xi (n = 52), and two copies of active X group (n = 38). Loss of XCI was more common in serous adenocarcinoma. Expression of CTAs increased in endometrial cancer with loss of XCI, which was accompanied by global hypomethylation. Expression of CTAs did not increase in Xist knockout mice.

Conclusions

Loss of XCI is common in serous adenocarcinoma. Global hypomethylation, and not loss of XCI, is the main mechanism of overexpression of CTAs.  相似文献   

20.
鼻咽癌(NPC)是一种多因素复杂疾病。其发病过程涉及EB病毒慢性感染、环境致癌因素及宿主基因之间的相互作用。在这一过程中,那些宿主基因在EB病毒感染及鼻咽癌的发生发展中起了关键作用仍不清楚。 本研究的目的是发现与鼻咽癌发生发展中两个关键步骤相关的遗传变异,即EB病毒持续性感染鼻咽部上皮细胞和鼻咽癌的形成。我们在广西梧州市及苍梧县鼻咽癌高发区收集汉族鼻咽癌患者350例、EB病毒壳抗原IgA抗体阳性者(IgA/VCA+)288例和EB病毒壳抗原IgA抗体阴性者(IgA/VCA-)346例。对先前鼻咽癌家系研究显示的鼻咽癌易感区4号染色体短臂(4p15.1-q12)进行了微卫星精细扫描,在 18 Mb的范围内选择34个微卫星标记,包括319个等位基因,对其进行基因分型。比较分析NPC 组和IgA/VCA+组等位基因频率结果显示,9个等位基因与鼻咽癌呈相关,其中5个为易感等位基因(OR=1.51-5.36, p=0.01-0.03),4个为限制性等位基因(OR值为0.3-0.71, p值为0.02-0.045)。比较分析IgA/VCA+组和IgA/VCA-组及比较所有IgA/VCA+者(包括NPC患者)和IgA/VCA-者等位基因频率的结果显示,12个等位基因与EB病毒壳抗原IgA抗体持续存在相关,其中3个在两组比较中均呈显著相关。等位基因 D4S3241-136 (p=0.004, OR=1.9, 95%CI=1.2-3.0) 和D4S3347-213 (p=0.001, OR=1.6, 95%CI=1.2-2.1) 可增加EB病毒 IgA/VCA抗体形成的危险,为易感基因;而等位基因D4S174-202 (p=0.001, OR=0.5, 95%CI=0.3-0.7) 可限制IgA/VCA抗体的形成。 但上述结果经多因素比较校正后,均失去相关性。我们的研究结果不能 确定该区域与鼻咽癌的形成相关,而另一个家系研究的结果也未得出相关的结果,但本研究却提供了进一步发现鼻咽癌相关基因的研究模式。有关4号染色体短臂 与EB病毒慢性持续感染及鼻咽癌的形成仍值得进一步深入研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号