首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 207 毫秒
1.
2.
Here we developed small molecule inhibitors of SKI-1/S1P enzyme of the Proprotein Convertase family following two approaches. One involves the assembly of multi-branch peptides while the other utilizes the insertion of alkyloxy pseudo peptide bond at P1-P1' cleavage position. In first approach, 2 and 4-branch peptides were designed based on the human (h) SKI-1(128-137) sequence, located N-terminal to its secondary activation site (K(137) downward arrow L). The 4-branch peptide exhibited the highest SKI-1 inhibitory property (IC(50) = 0.9 microM) with approximately 8.6 and 1.3-fold more potency than the corresponding single and 2-branch peptides, respectively. In the second strategy, an oxymethylene containing unnatural amino acid such as aminooxy-acetic acid (Aoaa) or 8-amino-3, 6 dioxa-octanoic acid (Adoa) was introduced substituting P1, P1' or both residues of hSKI-1(183-190) and hSKI-1(178-190) segments. These domains contain the same primary hSKI-1 activation site L(186) downward arrow R. Among those tested, P7-Tyr mutant [(178)GRYSSRRL(Adoa)AIP(190)] exhibited higher SKI-1 inhibitory activity (K(i)in low microM). Circular dichroism (CD) spectra of SKI-1 inhibitors showed interactions of varying degrees between the enzyme and the inhibitor consistent with the observed inhibition profile. A 3D-homology model structure of SKI-1 catalytic domain indicated a broad catalytic pocket.  相似文献   

3.
4.
Human site-1-protease (S1P, MEROPS S08.8063), also widely known as subtilisin/kexin isozyme 1 (SKI-1), is a membrane bound subtilisin-related serine protease, that belongs to a group of nine mammalian proprotein convertases. Among these proteases, S1P displays unique substrate specificity, by showing preferred cleavage after non-basic amino acids. S1P plays a key role in a proteolytic pathway that controls the cholesterol content of membranes, cells and blood. S1P also participates in the activation of viral coat glycoproteins of the lassa virus, the lympocytic choriomeningitis virus and the crimean congo hemorrhagic fever virus. We expressed recombinant human S1P using the baculovirus expression vector system and characterized the highly purified enzyme. Featuring a new chromogenic substrate (Acetyl-Arg-Arg-Leu-Leu-p-nitroanilide) we show that the enzymatic activity of S1P is not calcium dependent, but can be modulated by a variety of mono- and divalent cations. S1P displayed pronounced positive cooperativity with a substrate derived from the viral coat glycoprotein of the lassa virus. The screening of a limited number of protease inhibitors showed that S1P was not inhibited by specific inhibitors of other proprotein convertases or by Pefabloc SC (4-(2-aminoethyl) benzene sulphonyl fluoride, AEBSF). We found 3,4-dichloroisocoumarin (DCI) to be a potent slow binding inhibitor of human S1P, with a K(iapp) = 6.8 microM, thus representing a new small molecule inhibitor of S1P. These findings show that S1P differs significantly from other proprotein convertases with respect to kinetics, co-factor requirement and inhibition.  相似文献   

5.
Herein we designed, synthesized, tested, and validated fluorogenic methylcoumarinamide (MCA) and chloromethylketone-peptides spanning the Lassa virus GPC cleavage site as substrates and inhibitors for the proprotein convertase SKI-1/S1P. The 7-mer MCA (YISRRLL-MCA) and 8-mer MCA (IYISRRLL-MCA) are very efficiently cleaved with respect to both the 6-mer MCA (ISRRLL-MCA) and point mutated fluorogenic analogues, except for the 7-mer mutant Y253F. The importance of the P7 phenylic residue was confirmed by digestions of two 16-mer non-fluorogenic peptidyl substrates that differ by a single point mutation (Y253A). Because NMR analysis of these 16-mer peptides did not reveal significant structural differences at recognition motif RRLL, the P7 Tyr residue is likely important in establishing key interactions within the catalytic pocket of SKI-1. Based on these data, we established through analysis of pro-ATF6 and pro-SREBP-2 cellular processing that decanoylated chloromethylketone 7-mer, 6-mer, and 4-mer peptides containing the core RRLL sequence are irreversible and potent ex vivo SKI-1 inhibitors. Although caution must be exercised in using these inhibitors in in vitro reactions, as they can also inhibit the basic amino acid-specific convertase furin, within cells and when used at concentrations < or = 100 microM these inhibitors are relatively specific for inhibition of SKI-1 processing events, as opposed to those performed by furin-like convertases.  相似文献   

6.
7.
Crimean-Congo hemorrhagic fever (CCHF) virus is a tick-borne member of the genus Nairovirus, family Bunyaviridae. The mature virus glycoproteins, Gn and Gc (previously referred to as G2 and G1), are generated by proteolytic cleavage from precursor proteins. The amino termini of Gn and Gc are immediately preceded by tetrapeptides RRLL and RKPL, respectively, leading to the hypothesis that SKI-1 or related proteases may be involved (A. J. Sanchez, M. J. Vincent, and S. T. Nichol, J. Virol. 76:7263-7275, 2002). In vitro peptide cleavage data show that an RRLL peptide representing the Gn processing site is efficiently cleaved by SKI-1 protease, whereas an RKPL peptide representing the Gc processing site is cleaved at negligible levels. The efficient cleavage of RRLL peptide is consistent with the known recognition sequences of SKI-1, including the sequence determinants involved in the cleavage of the Lassa virus (family Arenaviridae) glycoprotein precursor. These in vitro findings were confirmed by expression of wild-type or mutant CCHF virus glycoproteins in CHO cells engineered to express functional or nonfunctional SKI-1. Gn processing was found to be dependent on functional SKI-1, whereas Gc processing was not. Gn processing occurred in the endoplasmic reticulum-cis Golgi compartments and was dependent on an R at the -4 position within the RRLL recognition motif, consistent with the known cleavage properties of SKI-1. Comparison of SKI-1 cleavage efficiency between peptides representing Lassa virus GP2 and CCHF virus Gn cleavage sites suggests that amino acids flanking the RRLL may modulate the efficiency. The apparent lack of SKI-1 cleavage at the CCHF virus Gc RKPL site indicates that related proteases, other than SKI-1, are likely to be involved in the processing at this site and identical or similar sites utilized in several New World arenaviruses.  相似文献   

8.
Basak A  Chrétien M  Seidah NG 《FEBS letters》2002,514(2-3):333-339
The subtilase subtilisin kexin isozyme-1 (SKI-1)/site 1 protease (S1P), has been implicated in the processing of Lassa virus glycoprotein C (GP-C) precursor into GP1 and GP2 that are responsible for viral fusion with the host cell membrane. Here, we studied in vitro the kinetics of this cleavage by hSKI-1 using an intramolecularly quenched fluorogenic (IQF) peptide, Q-GPC(251-263) [Abz-(251)Asp-Ile-Tyr-Ile-Ser-Arg-Arg-Leu-Leu/Gly-Thr-Phe-Thr(263)-3-NitroTyr-Ala-CONH(2)], containing the identified site. The measured V(max (app))/K(m (app)) was compared to those for other IQF SKI-substrates. Q-GPC(251-263) is cleaved 10-fold more efficiently than the previously known best SKI-substrate, Q-hproSKI(134-142). This study confirmed the role of SKI-1 in GP-C processing and provides a novel, rapid and efficient enzymatic assay of SKI-1.  相似文献   

9.
The proprotein convertase subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) is implicated in lipid homeostasis, the unfolded protein response, and lysosome biogenesis. The protease is further hijacked by highly pathogenic emerging viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P requires removal of an N-terminal prodomain, by a multistep process, generating the mature enzyme. Here, we uncover a modular structure of the human SKI-1/S1P prodomain and define its function in folding and activation. We provide evidence that the N-terminal AB fragment of the prodomain represents an autonomous structural and functional unit that is necessary and sufficient for folding and partial activation. In contrast, the C-terminal BC fragment lacks a defined structure but is crucial for autoprocessing and full catalytic activity. Phylogenetic analysis revealed that the sequence of the AB domain is highly conserved, whereas the BC fragment shows considerable variation and seems even absent in some species. Notably, SKI-1/S1P of arthropods, like the fruit fly Drosophila melanogaster, contains a shorter prodomain comprised of full-length AB and truncated BC regions. Swapping the prodomain fragments between fly and human resulted in a fully mature and active SKI-1/S1P chimera. Our study suggests that primordial SKI-1/S1P likely contained a simpler prodomain consisting of the highly conserved AB fragment that represents an independent folding unit. The BC region appears as a later evolutionary acquisition, possibly allowing more subtle fine-tuning of the maturation process.  相似文献   

10.
11.
HCV infection is a major risk factor for liver cancer and liver transplantation worldwide. Overstimulation of host lipid metabolism in the liver by HCV-encoded proteins during viral infection creates a favorable environment for virus propagation and pathogenesis. In this study, we hypothesize that targeting cellular enzymes acting as master regulators of lipid homeostasis could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with human Flaviviridae viruses such as hepatitis C virus (HCV), whose assembly and pathogenesis depend on interaction with lipid droplets (LDs). One such master regulator of cholesterol metabolic pathways is the host subtilisin/kexin-isozyme-1 (SKI-1)--or site-1 protease (S1P). SKI-1/S1P plays a critical role in the proteolytic activation of sterol regulatory element binding proteins (SREBPs), which control expression of the key enzymes of cholesterol and fatty-acid biosynthesis. Here we report the development of a SKI-1/S1P-specific protein-based inhibitor and its application to blocking the SREBP signaling cascade. We demonstrate that SKI-1/S1P inhibition effectively blocks HCV from establishing infection in hepatoma cells. The inhibitory mechanism is associated with a dramatic reduction in the abundance of neutral lipids, LDs, and the LD marker: adipose differentiation-related protein (ADRP)/perilipin 2. Reduction of LD formation inhibits virus assembly from infected cells. Importantly, we confirm that SKI-1/S1P is a key host factor for HCV infection by using a specific active, site-directed, small-molecule inhibitor of SKI-1/S1P: PF-429242. Our studies identify SKI-1/S1P as both a novel regulator of the HCV lifecycle and as a potential host-directed therapeutic target against HCV infection and liver steatosis. With identification of an increasing number of human viruses that use host LDs for infection, our results suggest that SKI-1/S1P inhibitors may allow development of novel broad-spectrum biopharmaceuticals that could lead to novel indirect-acting antiviral options with the current standard of care.  相似文献   

12.
13.
The proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P) plays crucial roles in cellular homeostatic functions and is hijacked by pathogenic viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P involves sequential autocatalytic processing of its N-terminal prodomain at sites B′/B followed by the herein newly identified C′/C sites. We found that SKI-1/S1P autoprocessing results in intermediates whose catalytic domain remains associated with prodomain fragments of different lengths. In contrast to other zymogen proprotein convertases, all incompletely matured intermediates of SKI-1/S1P showed full catalytic activity toward cellular substrates, whereas optimal cleavage of viral glycoproteins depended on B′/B processing. Incompletely matured forms of SKI-1/S1P further process cellular and viral substrates in distinct subcellular compartments. Using a cell-based sensor for SKI-1/S1P activity, we found that 9 amino acid residues at the cleavage site (P1–P8) and P1′ are necessary and sufficient to define the subcellular location of processing and to determine to what extent processing of a substrate depends on SKI-1/S1P maturation. In sum, our study reveals novel and unexpected features of SKI-1/S1P zymogen activation and subcellular specificity of activity toward cellular and pathogen-derived substrates.  相似文献   

14.
A crucial step in the life cycle of arenaviruses is the biosynthesis of the mature fusion-active viral envelope glycoprotein (GP) that is essential for virus-host cell attachment and entry. The maturation of the arenavirus GP precursor (GPC) critically depends on proteolytic processing by the cellular proprotein convertase (PC) subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P). Here we undertook a molecular characterization of the SKI-1/S1P processing of the GPCs of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the pathogenic Lassa virus (LASV). Previous studies showed that the GPC of LASV undergoes processing in the endoplasmic reticulum (ER)/cis-Golgi compartment, whereas the LCMV GPC is cleaved in a late Golgi compartment. Herein we confirm these findings and provide evidence that the SKI-1/S1P recognition site RRLL, present in the SKI-1/S1P prodomain and LASV GPC, but not in the LCMV GPC, is crucial for the processing of the LASV GPC in the ER/cis-Golgi compartment. Our structure-function analysis revealed that the cleavage of arenavirus GPCs, but not cellular substrates, critically depends on the autoprocessing of SKI-1/S1P, suggesting differences in the processing of cellular and viral substrates. Deletion mutagenesis showed that the transmembrane and intracellular domains of SKI-1/S1P are dispensable for arenavirus GPC processing. The expression of a soluble form of the protease in SKI-I/S1P-deficient cells resulted in the efficient processing of arenavirus GPCs and rescued productive virus infection. However, exogenous soluble SKI-1/S1P was unable to process LCMV and LASV GPCs displayed at the surface of SKI-I/S1P-deficient cells, indicating that GPC processing occurs in an intracellular compartment. In sum, our study reveals important differences in the SKI-1/S1P processing of viral and cellular substrates.  相似文献   

15.
Crimean-Congo hemorrhagic fever virus (CCHFV) causes severe human disease. The CCHFV medium RNA encodes a polyprotein which is proteolytically processed to yield the glycoprotein precursors PreGn and PreGc, followed by structural glycoproteins Gn and Gc. Subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P) plays a central role in Gn processing. Here we show that CCHFV-infected cells deficient in SKI-1/S1P produce no infectious virus, although PreGn and PreGc accumulated normally in the Golgi apparatus, the site of virus assembly. Only nucleoprotein-containing particles which lacked virus glycoproteins (Gn/Gc or PreGn/PreGc) were secreted. Complementation of SKI-1/S1P-deficient cells with a SKI-1/S1P expression vector restored release of infectious virus (>106 PFU/ml), confirming that SKI-1/S1P processing is required for incorporation of viral glycoproteins. SKI-1/S1P may represent a promising antiviral target.  相似文献   

16.
17.
Biochemical and enzymatic characterization of the novel human subtilase hSKI-1 was carried out in various cell lines. Within the endoplasmic reticulum of LoVo cells, proSKI-1 is converted to SKI-1 by processing of its prosegment into 26-, 24-, 14-, 10-, and 8-kDa products, some of which remain tightly associated with the enzyme. N-terminal sequencing and mass spectrometric analysis were used to map the cleavage sites of the most abundant fragments, which were confirmed by synthetic peptide processing. To characterize its in vitro enzymatic properties, we generated a secreted form of SKI-1. Our data demonstrate that SKI-1 is a Ca(2+)-dependent proteinase exhibiting optimal cleavage at pH 6.5. We present evidence that SKI-1 processes peptides mimicking the cleavage sites of the SKI-1 prosegment, pro-brain-derived neurotrophic factor, and the sterol regulatory element-binding protein SREBP-2. Among the candidate peptides encompassing sections of the SKI-1 prosegment, the RSLK(137)- and RRLL(186)-containing peptides were best cleaved by this enzyme. Mutagenesis of the latter peptide allowed us to develop an efficiently processed SKI-1 substrate and to assess the importance of several P and P' residues. Finally, we demonstrate that, in vitro, recombinant prosegments of SKI-1 inhibit its activity with apparent inhibitor constants of 100-200 nM.  相似文献   

18.
19.
The secretory proprotein convertase (PC) family comprises nine members: PC1/3, PC2, furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P, and PCSK9. The first seven PCs cleave their substrates at single or paired basic residues, and SKI-1/S1P cleaves its substrates at non-basic residues in the Golgi. PCSK9 cleaves itself once, and the secreted inactive protease escorts specific receptors for lysosomal degradation. It regulates the levels of circulating LDL cholesterol and is considered a major therapeutic target in phase III clinical trials. In vivo, PCs exhibit unique and often essential functions during development and/or in adulthood, but certain convertases also exhibit complementary, redundant, or opposite functions.  相似文献   

20.
Processing of prohormones to generate active products typically occurs at basic residues via cleavage by proprotein convertases. A less common type of cleavage is mediated at hydrophobic (L, V, F, N) or small amino acid (A, T, S) residues. Efforts to identify the proteinases responsible for processing precursors at their hydrophobic amino acids has led to the recent cloning of a new type-1 membrane-bound subtilase called SKI-1. The NH2-terminal region of prosomatostatin, previously shown to contain a sorting signal for the regulated secretory pathways, is processed to generate PSST[1–10]. The exact cleavage mechanism is unknown, but has been assumed to involve monobasic processing at Lys13 followed by carboxypeptidase trimming. We found that K13A mutation did not block PSST[1–10] production. Since the prosomatostatin sequence R8–Q9–F10–L11↓ qualifies as a potential SKI-1 substrate, using a vaccinia virus expression system along with HPLC and radioimmunoassays, we observed that overexpression of recombinant SKI-1 in COS-1 and HEK-293 cells significantly increased the production of PSST[1–10]. Additionally, in CHO cells lacking SKI-1, there was a significant reduction in PSST[1–10] production which could be increased upon SKI-1 stimulation. Mutagenesis studies showed that efficient processing of PSST to PSST[1–10] required the RXRXXL motif. However, this NH2-terminal cleavage was not a prerequisite for the formation of SST-14 and SST-28.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号