首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ghrelin, a recently discovered peptide hormone, is produced by endocrine cells in the stomach, the so-called A-like cells. Ghrelin binds to the growth hormone (GH) secretagogue receptor and releases GH. It is claimed to be orexigenic and to control gastric acid secretion and gastric motility. In this study, we examined the effects of ghrelin, des-Gln14-ghrelin, des-octanoyl ghrelin, ghrelin-18, -10 and -5 (and motilin) on gastric emptying in mice and on gastric acid secretion in chronic fistula rats and pylorus-ligated rats. We also examined whether ghrelin affected the activity of the predominant gastric endocrine cell populations, G cells, ECL cells and D cells. Ghrelin and des-Gln14-ghrelin stimulated gastric emptying in a dose-dependent manner while des-octanoyl ghrelin and motilin were without effect. The C-terminally truncated ghrelin fragments were effective but much less potent than ghrelin itself. Ghrelin, des-Gln14-ghrelin and des-octanoyl ghrelin neither stimulated nor inhibited gastric acid secretion, and ghrelin, finally, did not affect secretion from either G cells, ECL cells or D cells.  相似文献   

2.
We aimed to assess the occurrence of ghrelin, a new gut hormone, in endocrine growths of the stomach. In addition, since ghrelin has been detected in other gut derivatives during adult and/or fetal life, we also studied endocrine tumours of the pancreas, intestine and lung. A specific serum generated against amino acids 13-28 of ghrelin was tested on 16 specimens of gastric mucosa with endocrine cell hyperplasia and on 75 endocrine tumours. Ghrelin-immunoreactive cells were moderately represented in normal, atrophic or hypertrophic gastric mucosa, as a rule with no obvious hyperplastic changes even in the presence of concurrent, prominent enterochromaffin-like cell hyperplasia associated with hypergastrinemia. Ghrelin cells were also found in tumour cell fractions of well-differentiated gastric (25 of 33, 76%), pancreatic (6 of 15, 40%) and pulmonary (4 of 8) endocrine tumours. No ghrelin immunoreactivity was detected in 14 intestinal tumours and in five poorly differentiated endocrine carcinomas of the stomach or pancreas. We conclude that ghrelin cells may take part in gut endocrine growths, with special reference to well-differentiated endocrine tumours of the stomach, independently from associated signs of endocrine hyperfunction.  相似文献   

3.
OBJECTIVES: Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), was recently identified in the stomach. Ghrelin is produced in a population of endocrine cells in the gastric mucosa, but expression in intestine, hypothalamus and testis has also been reported. Recent data indicate that ghrelin affects insulin secretion and plays a direct role in metabolic regulation and energy balance. On the basis of these findings, we decided to examine whether ghrelin is expressed in human pancreas. Specimens from fetal to adult human pancreas and stomach were studied by immunocytochemistry, for ghrelin and islet hormones, and in situ hybridisation, for ghrelin mRNA. RESULTS: We identified ghrelin expression in a separate population of islet cells in human fetal, neonatal, and adult pancreas. Pancreatic ghrelin cells were numerous from midgestation to early postnatally (10% of all endocrine cells). The cells were few, but regularly seen in adults as single cells at the islet periphery, in exocrine tissue, in ducts, and in pancreatic ganglia. Ghrelin cells did not express any of the known islet hormones. In fetuses, at midgestation, ghrelin cells in the pancreas clearly outnumbered those in the stomach. CONCLUSIONS: Ghrelin is expressed in a quite prominent endocrine cell population in human fetal pancreas, and ghrelin expression in the pancreas precedes by far that in the stomach. Pancreatic ghrelin cells remain in adult islets at lower numbers. Ghrelin is not co-expressed with any known islet hormone, and the ghrelin cells may therefore constitute a new islet cell type.  相似文献   

4.
Ghrelin is produced mainly by endocrine cells in the stomach and is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). It also influences feeding behavior, metabolic regulation, and energy balance. It affects islet hormone secretion, and expression of ghrelin and GHS-R in the pancreas has been reported. In human islets, ghrelin expression is highest pre- and neonatally. We examined ghrelin and GHS-R in rat islets during development with immunocytochemistry and in situ hybridization. We also studied the effect of ghrelin on insulin secretion from INS-1 (832/13) cells and the expression of GHS-R in these cells. We found ghrelin expression in rat islet endocrine cells from mid-gestation to 1 month postnatally. Islet expression of GHS-R mRNA was detected from late fetal stages to adult. The onset of islet ghrelin expression preceded that of gastric ghrelin. Islet ghrelin cells constitute a separate and novel islet cell population throughout development. However, during a short perinatal period a minor subpopulation of the ghrelin cells co-expressed glucagon or pancreatic polypeptide. Markers for cell lineage, proliferation, and duct cells revealed that the ghrelin cells proliferate, originate from duct cells, and share lineage with glucagon cells. Ghrelin dose-dependently inhibited glucose-stimulated insulin secretion from INS-1 (832/13) cells, and GHS-R was detected in the cells. We conclude that ghrelin is expressed in a novel developmentally regulated endocrine islet cell type in the rat pancreas and that ghrelin inhibits glucose-stimulated insulin secretion via a direct effect on the beta-cell.  相似文献   

5.
Ghrelin is a new gastric peptide involved in food intake control and growth hormone release. We aimed to assess its cell localisation in man during adult and fetal life and to clarify present interspecies inconsistencies of gastric endocrine cell types. A specific serum generated against amino acids 13-28 of ghrelin was tested on fetal and adult gastric mucosa and compared with ghrelin in situ hybridisation. Immunogold electron microscopy was performed on normal human, rat and dog adult stomach. Ghrelin cells were detected in developing gut, pancreas and lung from gestational week 10 and in adult human, rat and dog gastric mucosa. By immunogold electron microscopy, gastric ghrelin cells showed distinctive morphology and hormone reactivity in respect to histamine enterochromaffin-like, somatostatin D, glucagon A or serotonin enterochromaffin cells. Ghrelin cells were characterised by round, compact, electron-dense secretory granules of P/D(1) type in man (mean diameter 147+/-30 nm), A-like type in the rat (183+/-37 nm) and X type in the dog (273+/-49 nm). It is concluded that, ghrelin is produced by well-defined cell types, which in the past had been labelled differently in various mammals mostly because of the different size of their secretory granule. In man ghrelin cells develop during early fetal life.  相似文献   

6.
Ghrelin attenuates the development of acute pancreatitis in rat.   总被引:12,自引:0,他引:12  
BACKGROUND: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. METHODS: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. RESULTS: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. CONCLUSIONS: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems Background: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. Methods: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. Results: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta conc; concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. Conclusions: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems to be related the inhibition in inflammatory process and the reduction in liberation of pro-inflammatory IL-1beta.  相似文献   

7.
Ultrastructure of islet ghrelin cells in the human fetus   总被引:6,自引:0,他引:6  
Ghrelin is a peptide hormone predominantly produced in the stomach. Ghrelin expression has also been reported in other tissues including the pancreas. We have reported that ghrelin cells constitute a novel endocrine cell type in the human and the developing rat islets. The cells are most numerous pre- and neonatally and, in humans, constitute 10% of all islet cells from mid-gestation to birth. Since gastric ghrelin expression is low before birth, the islets may be the main source of circulating ghrelin during this time. In the present investigation, we have performed an ultrastructural analysis of pancreatic ghrelin cells in human fetuses by using transmission electron microscopy and immunogold labelling. In addition, morphometrical analysis of secretory granules size was performed. Our data provide evidence for the unique ultrastructural features of ghrelin cells versus other islet cells. Notably, the secretory granules of ghrelin cells were of small size with a mean dense-core diameter of 110 nm. We conclude that ghrelin cells constitute a novel islet cell type, distinct from the previously hormonally characterised islet cell types.This work was supported by grants from the Swedish Medical Research Council (Project No. 4499), the Royal Physiographic Society and the Novo Nordic, Påhlsson and Gyllenstiernska Krapperup Foundations  相似文献   

8.
Ghrelin expression in fetal, infant, and adult human lung.   总被引:8,自引:0,他引:8  
Ghrelin is a recently identified hormone with potent growth hormone (GH)-releasing activity. It is produced by rat and human gastric endocrine cells and by the pituitary, hypothalamus, placenta, and by gastroenteropancreatic tumors. No evidence of ghrelin production by foregut-derived organs other than stomach has been provided to date. The aim of the present study was to investigate ghrelin expression by human fetal (20 cases), infant (13 cases), and adult (seven cases) lungs by immunohistochemistry, in situ hybridization, and RT-PCR. Expression of the GH secretagogue receptor, the endogenous receptor for ghrelin, was also investigated by RT-PCR. Ghrelin protein was found in the endocrine cells of the fetal lung in decreasing amounts from embryonic to late fetal periods. Its expression was maintained in newborns and children under 2 years but was virtually absent in older individuals. Scattered positive cells were also found in the trachea and the esophagus. Ghrelin mRNA was detected in adult lung by the more sensitive RT-PCR technique. GHS receptor mRNA was detected in nine cases of infant and adult lungs, possibly indicating the existence of local autocrine circuits. We conclude that the fetal lung is an additional source of circulating ghrelin, whose functions at the respiratory tract level remain to be clarified.  相似文献   

9.
Ghrelin is an orexigenic peptide hormone produced mainly by a distinct group of dispersed endocrine cells located within the gastric oxyntic mucosa. Besides secreted gene products derived from the preproghrelin gene, which include acyl-ghrelin, desacyl-ghrelin and obestatin, ghrelin cells also synthesize the secreted protein nesfatin-1. The main goal of the current study was to identify other proteins secreted from ghrelin cells. An initial gene chip screen using mRNAs derived from highly enriched pools of mouse gastric ghrelin cells demonstrated high levels of serum retinol-binding protein (RBP4) and transthyretin (TTR), both of which are known to circulate in the bloodstream bound to each other. This high expression was confirmed by quantitative RT-PCR using as template mRNA derived from the enriched gastric ghrelin cell pools and from two ghrelin-producing cell lines (SG-1 and PG-1). RBP4 protein also was shown to be secreted into the culture medium of ghrelin cell lines. Neither acute nor chronic caloric restriction had a significant effect on RBP4 mRNA levels within stomachs of C57BL/6J mice, although both manipulations significantly decreased stomach TTR mRNA levels. In vitro studies using PG-1 cells showed no effect on RBP4 release of octanoic acid, epinephrine or norepinephrine, all of which are known to act directly on ghrelin cells to stimulate ghrelin secretion. These data provide new insights into ghrelin cell physiology, and given the known functions of RBP4 and TTR, support an emerging role for the ghrelin cell in blood glucose handling and metabolism.  相似文献   

10.
11.
Ghrelin is an acyl-peptide gastric hormone acting on the pituitary and hypothalamus to stimulate growth hormone (GH) release, adiposity, and appetite. Ghrelin endocrine activities are entirely dependent on its acylation and are mediated by GH secretagogue (GHS) receptor (GHSR)-1a, a G protein-coupled receptor mostly expressed in the pituitary and hypothalamus, previously identified as the receptor for a group of synthetic molecules featuring GH secretagogue (GHS) activity. Des-acyl ghrelin, which is far more abundant than ghrelin, does not bind GHSR-1a, is devoid of any endocrine activity, and its function is currently unknown. Ghrelin, which is expressed in heart, albeit at a much lower level than in the stomach, also exerts a cardio protective effect through an unknown mechanism, independent of GH release. Here we show that both ghrelin and des-acyl ghrelin inhibit apoptosis of primary adult and H9c2 cardiomyocytes and endothelial cells in vitro through activation of extracellular signal-regulated kinase-1/2 and Akt serine kinases. In addition, ghrelin and des-acyl ghrelin recognize common high affinity binding sites on H9c2 cardiomyocytes, which do not express GHSR-1a. Finally, both MK-0677 and hexarelin, a nonpeptidyl and a peptidyl synthetic GHS, respectively, recognize the common ghrelin and des-acyl ghrelin binding sites, inhibit cell death, and activate MAPK and Akt.These findings provide the first evidence that, independent of its acylation, ghrelin gene product may act as a survival factor directly on the cardiovascular system through binding to a novel, yet to be identified receptor, which is distinct from GHSR-1a.  相似文献   

12.
Somatostatin suppresses ghrelin secretion from the rat stomach   总被引:6,自引:0,他引:6  
Ghrelin is an acylated peptide that stimulates food intake and the secretion of growth hormone. While ghrelin is predominantly synthesized in a subset of endocrine cells in the oxyntic gland of the human and rat stomach, the mechanism regulating ghrelin secretion remains unknown. Somatostatin, a peptide produced in the gastric oxyntic mucosa, is known to suppress secretion of several gastrointestinal peptides in a paracrine fashion. By double immunohistochemistry, we demonstrated that somatostatin-immunoreactive cells contact ghrelin-immunoreactive cells. A single intravenous injection of somatostatin reduced the systemic plasma concentration of ghrelin in rats. Continuous infusion of somatostatin into the gastric artery of the vascularly perfused rat stomach suppressed ghrelin secretion in both dose- and time-dependent manner. These findings indicate that ghrelin secretion from the stomach is regulated by gastric somatostatin.  相似文献   

13.
Ghrelin, a 28-amino acid acylated peptide produced mainly by the stomach, has various functions. Recent studies focus on its endocrine and/or paracrine effects in the regulation of the hypothalamo-pituitary-gonadal axis, that is, the role in reproduction. Previous data have shown that variation of ghrelin depended on the phases of estrous cycle in adult rat ovary. This study was to investigate the expression of ghrelin in the cyclic porcine hypothalamo-pituitary-ovary axis and stomach by semiquantitative RT-PCR and immunohistochemical method. Twenty virginal gilts were classified into four groups as the proestrus, estrus, diestrus1 and diestrus2. Results showed that expression of ghrelin mRNA in the hypothalamus changed with the estrous cycle, i.e., with the highest level in the proestrus and the lowest in the estrus. In the pituitary, the pattern of ghrelin mRNA expression during estrous cycle markedly decreased in the estrus and diestrus1. In the ovary, ghrelin mRNA exhibited with the highest level in the diestrus2 and the lowest in the proestrus, which was different from those in the hypothalamus and pituitary. In the stomach, the expression of ghrelin mRNA had the same tendency as that of the porcine ovary. In immunohistochemical experiment, ghrelin immunoreactive cells were predominantly located in the luteal compartment and growing follicles in the luteal phase of ovary. However, only few ghrelin immunoreactive cells were found in the proestrus ovary. In gastric mucosa, ghrelin immunoreactive cells were detected in the estrus, diestrus1 and diestrus2, but few ghrelin positive cells were seen in the proestrus. Results suggest that ghrelin may play a major role in the endocrine network that integrates energy balance and reproduction.  相似文献   

14.
Ghrelin is a peptide hormone that has been implicated in the regulation of food intake and energy homeostasis. Ghrelin is predominantly produced in the stomach, but is also expressed in many other tissues where its functions are not well characterized. In the rodent and human pancreas, ghrelin levels peak at late gestation and gradually decline postnatally. Several studies have suggested that ghrelin regulates beta cell function during embryonic development and in the adult. In addition, in a number of mouse models, ghrelin cells appear to replace insulin- and glucagon-producing cells in the islet. In this analysis, we investigated whether the absence or overexpression of ghrelin influenced the development and differentiation of the pancreatic islet during embryonic development. These studies revealed that ghrelin is dispensable for normal pancreas development during gestation. Conversely, we demonstrated that elevated ghrelin in the Nkx2.2 null islets is not responsible for the absence of insulin- and glucagon-producing cells. Finally, we have also determined that in the absence of insulin, ghrelin cells form in their normal numbers and ghrelin is expressed at wild type levels.  相似文献   

15.
Ghrelin is a gut peptide that is secreted from the stomach and stimulates food intake. There are ghrelin receptors throughout the gut and intracerebroventricular ghrelin has been shown to increase gastric acid secretion. The aim of the present study was to examine the effects of peripherally administered ghrelin on gastric emptying of a non-nutrient and nutrient liquid, as well as, basal and pentagastrin-stimulated gastric acid secretion in awake rats. In addition, gastric contractility was studied in vitro. Rats equipped with a gastric fistula were subjected to an intravenous infusion of ghrelin (10-500 pmol kg(-1) min(-1)) during saline or pentagastrin (90 pmol kg(-1) min(-1)) infusion. After administration of polyethylene glycol (PEG) 4000 with 51Cr as radioactive marker, or a liquid nutrient with (51)Cr, gastric retention was measured after a 20-min infusion of ghrelin (500 pmol kg(-1) min(-1)). In vitro isometric contractions of segments of rat gastric fundus were studied (10(-9) to 10(-6) M). Ghrelin had no effect on basal acid secretion, but at 500 pmol kg(-1) min(-1) ghrelin significantly decreased pentagastrin-stimulated acid secretion. Ghrelin had no effect on gastric emptying of the nutrient liquid, but significantly increased gastric emptying of the non-nutrient liquid. Ghrelin contracted fundus muscle strips dose-dependently (pD2 of 6.93+/-0.7). Ghrelin IV decreased plasma orexin A concentrations and increased plasma somatostatin concentrations. Plasma gastrin concentrations were unchanged during ghrelin infusion. Thus, ghrelin seems to not only effect food intake but also gastric motor and secretory function indicating a multifunctional role for ghrelin in energy homeostasis.  相似文献   

16.
The peptide hormone ghrelin is released from a distinct group of gastrointestinal cells in response to caloric restriction, whereas its levels fall after eating. The mechanisms by which ghrelin secretion is regulated remain largely unknown. Here, we have used primary cultures of mouse gastric mucosal cells to investigate ghrelin secretion, with an emphasis on the role of glucose. Ghrelin secretion from these cells upon exposure to different d-glucose concentrations, the glucose antimetabolite 2-deoxy-d-glucose, and other potential secretagogues was assessed. The expression profile of proteins involved in glucose transport, metabolism, and utilization within highly enriched pools of mouse ghrelin cells and within cultured ghrelinoma cells was also determined. Ghrelin release negatively correlated with d-glucose concentration. Insulin blocked ghrelin release, but only in a low d-glucose environment. 2-Deoxy-d-glucose prevented the inhibitory effect of high d-glucose exposure on ghrelin release. mRNAs encoding several facilitative glucose transporters, hexokinases, the ATP-sensitive potassium channel subunit Kir6.2, and sulfonylurea type 1 receptor were expressed highly within ghrelin cells, although neither tolbutamide nor diazoxide exerted direct effects on ghrelin secretion. These findings suggest that direct exposure of ghrelin cells to low ambient d-glucose stimulates ghrelin release, whereas high d-glucose and glucose metabolism within ghrelin cells block ghrelin release. Also, low d-glucose sensitizes ghrelin cells to insulin. Various glucose transporters, channels, and enzymes that mediate glucose responsiveness in other cell types may contribute to the ghrelin cell machinery involved in regulating ghrelin secretion under these different glucose environments, although their exact roles in ghrelin release remain uncertain.  相似文献   

17.
Ghrelin is an acylated peptidyl gastric hormone acting on the pituitary and hypothalamus to stimulate appetite, adiposity, and growth hormone release, through activation of growth hormone secretagogue receptor (GHSR)-1a receptor. Moreover, ghrelin features several activities such as inhibition of apoptosis, regulation of differentiation, and stimulation or inhibition of proliferation of several cell types. Ghrelin acylation is absolutely required for both GHSR-1a binding and its central endocrine activities. However, the unacylated ghrelin form, des-acyl ghrelin, which does not bind GHSR-1a and is devoid of any endocrine activity, is far more abundant than ghrelin in plasma, and it shares with ghrelin some of its cellular activities. In here we show that both ghrelin and des-acyl ghrelin stimulate proliferating C2C12 skeletal myoblasts to differentiate and to fuse into multinucleated myotubes in vitro through activation of p38. Consistently, both ghrelin and des-acyl ghrelin inhibit C2C12 proliferation in growth medium. Moreover, the ectopic expression of ghrelin in C2C12 enhances differentiation and fusion of these myoblasts in differentiation medium. Finally, we show that C2C12 cells do not express GHSR-1a, but they do contain a common high-affinity binding site recognized by both acylated and des-acylated ghrelin, suggesting that the described activities on C2C12 are likely mediated by this novel, yet unidentified receptor for both ghrelin forms.  相似文献   

18.
Ghrelin--not just another stomach hormone   总被引:14,自引:0,他引:14  
Growth hormone (GH) secretagogues (GHSs) are non-natural, synthetic substances that stimulate GH secretion via a G-protein-coupled receptor called the GHS-receptor (GHS-R). The natural ligand for the GHS-R has been identified recently; it is called ghrelin. Ghrelin and its receptor show a widespread distribution in the body; the greatest expression of ghrelin is in stomach endocrine cells. Administration of exogenous ghrelin has been shown to stimulate pituitary GH secretion, appetite, body growth and fat deposition. Ghrelin was probably designed to be a major anabolic hormone. Ghrelin also exerts several other activities in the stomach. The findings that ghrelin is produced in mucosal endocrine cells of the stomach and intestine, and that ghrelin is measurable in the general circulation indicate its hormonal nature. A maximal expression of ghrelin in the stomach suggests that there is a gastrointestinal hypothalamic-pituitary axis that influences GH secretion, body growth and appetite that is responsive to nutritional and caloric intakes.  相似文献   

19.
Ghrelin is a recently discovered peptide in the endocrine cells of the stomach, which may stimulate gastric motility via the vagal nerve pathway. However, the mechanism of ghrelin-induced changes in gastrointestinal motility has not been clearly defined. The purpose of this study was to investigate the pharmacological effects of ghrelin on gastric myoelectrical activity and gastric emptying in rats, and to investigate whether cholinergic activity is involved in the effects of ghrelin. The study was performed on Sprague-Dawley rats implanted with serosal electrodes for electrogastrographic recording. Gastric slow waves were recorded from fasting rats at baseline and after injection of saline, ghrelin, atropine, or atropine+ghrelin. Gastric emptying of non-caloric liquid was measured by the spectrophotometric method in conscious rats. Intravenous administration of rat ghrelin (20 microg/kg) increased not only dominant frequency, dominant power and regularity of the gastric slow wave but also the gastric emptying rate when compared with the control rats (P<0.01, P<0.05, P<0.05, P<0.001 respectively). These stimulatory actions of ghrelin on both gastric myoelectrical activity and gastric emptying were not fully eliminated by pretreatment with atropine sulphate. These results taken together suggest that ghrelin may play a physiological role in the enteric neurotransmission controlling gastric contractions in rats.  相似文献   

20.
Vu JP  Wang HS  Germano PM  Pisegna JR 《Peptides》2011,32(11):2340-2347
Ghrelin is a 28 amino acid peptide, primarily produced by the oxyntic mucosa X/A like neuroendocrine cells in the stomach. It is also found in the small intestine, hypothalamus, pituitary gland, pancreas, heart, adipose tissue, and immune system. In gastrointestinal neuroendocrine tumors (NETs) ghrelin release has been well documented. Ghrelin is a brain-gut circuit peptide with an important role in the physiological regulation of appetite, response to hunger and starvation, metabolic and endocrine functions as energy expenditure, gastric motility and acid secretion, insulin secretion and glucose homeostasis, as well as in the potential connection to the central nervous system. Recently, there has been a significant interest in the biological effects of ghrelin in NETs. In this article, we present a comprehensive review of ghrelin's expression and a brief summary of ghrelin's physiological role in NETs patients with carcinoids, type A chronic atrophic gastritis (CAG), with or without MEN-1, and with and without liver metastases. We hope, with the research reviewed here, to offer compelling evidence of the potential significance of ghrelin in NETs, as well as to provide a useful guide to the future work in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号