共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of Glutamate Uptake into Synaptic Vesicles 总被引:7,自引:22,他引:7
Recent evidence indicates that L-glutamate is taken up into synaptic vesicles in an ATP-dependent manner, supporting the notion that synaptic vesicles may be involved in glutamate synaptic transmission. In this study, we further characterized the ATP-dependent vesicular uptake of glutamate. Evidence is provided that a Mg-ATPase, not Ca-ATPase, is responsible for the ATP hydrolysis coupled to the glutamate uptake. The ATP-dependent glutamate uptake was inhibited by agents known to dissipate the electrochemical proton gradient across the membrane of chromaffin granules. Hence, it is suggested that the vesicular uptake of glutamate is driven by electrochemical proton gradients generated by the Mg-ATPase. Of particular interest is the finding that the ATP-dependent glutamate uptake is markedly stimulated by chloride over a physiologically relevant, millimolar concentration range, suggesting an important role of intranerve terminal chloride in the accumulation of glutamate in synaptic vesicles. The vesicular glutamate translocator is highly specific for L-glutamate, and failed to interact with aspartate, its related agents, and most of the glutamate analogs tested. It is proposed that this vesicular translocator plays a crucial role in determining the fate of glutamate as a neurotransmitter. 相似文献
2.
The ATP-dependent uptake of L-glutamate into synaptic vesicles has been well characterized, implicating a key role for synaptic vesicles in glutamatergic neurotransmission. In the present study, we provide evidence that vesicular glutamate uptake is selectively inhibited by the peptide-containing halogenated ergot bromocriptine. It is the most potent inhibitor of the agents tested: the IC50 was determined to be 22 microM. The uptake was also inhibited by other ergopeptines such as ergotamine and ergocristine, but with less potency. Ergots devoid of the peptide moiety, however, such as ergonovine, lergotrile, and methysergide, had little or no effect. Although bromocriptine is known to elicit dopaminergic and serotonergic effects, its inhibitory effect on vesicular glutamate uptake was not mimicked by agents known to interact with dopamine and serotonin receptors. Kinetic data suggest that bromocriptine competes with glutamate for the glutamate binding site on the glutamate translocator. It is proposed that this inhibitor could be useful as a prototype probe in identifying and characterizing the vesicular glutamate translocator, as well as in developing a more specific inhibitor of the transport system. 相似文献
3.
Glutamate uptake into synaptic vesicles is a vital step for glutamatergic neurotransmission. Quinolinic acid (QA) is an endogenous
glutamate analog that may be involved in the etiology of epilepsy and is related to disturbances on glutamate release and
uptake. Guanine-based purines (GBPs) guanosine 5′-monophosphate (GMP and guanosine) have been shown to exert anticonvulsant
effects against QA-induced seizures. The aims of this study were to investigate the effects of in vivo administration of several
convulsant agents on glutamate uptake into synaptic vesicles and investigate the role of MK-801, guanosine or GMP (anticonvulsants)
on glutamate uptake into synaptic vesicles from rats presenting QA-induced seizures. Animals were treated with vehicle (saline
0.9%), QA 239.2 nmoles, kainate 30 mg/kg, picrotoxin 6 mg/kg, PTZ (pentylenetetrazole) 60 mg/kg, caffeine 150 mg/kg or MES
(maximal transcorneal electroshock) 80 mA. All convulsant agents induced seizures in 80–100% of animals, but only QA stimulated
glutamate uptake into synaptic vesicle. Guanosine or GMP prevented seizures induced by QA (up to 52% of protection), an effect
similar to the NMDA antagonist MK-801 (60% of protection). Both GBPs and MK-801 prevented QA-induced glutamate uptake stimulation.
This study provided additional evidence on the role of QA and GBPs on glutamatergic system in rat brain, and point to new
perspectives on seizures treatment. 相似文献
4.
Herman Wolosker Marcelo Reis Jamil Assreuy Leopoldo de Meis 《Journal of neurochemistry》1996,66(5):1943-1948
Abstract: Nitric oxide (NO; including NO• , NO+ , and NO− ) was found to inhibit glutamate uptake by isolated synaptic vesicles of rat brain. This was observed when two unrelated NO donors, S -nitrosogluthathione and S -nitroso- N -acetylpenicillamine, were used. The primary target of NO is the H+ -ATPase found in the synaptic vesicles, which leads to dissipation of the electrochemical proton gradient and inhibition of glutamate uptake. Oxyhemoglobin (12 µ M ) and, to a much lesser extent, methemoglobin protected the vacuolar H+ -ATPase from inhibition. Inhibition of H+ pumping by NO was reversed by addition of 0.5 m M dithiothreitol. The results indicate that the vacuolar H+ -ATPase from synaptic vesicles is inhibited by NO by a mechanism that involves S -nitrosylation of critical sulfhydryl groups in the enzyme. The interaction of NO with synaptic vesicles might be of importance for the understanding of the multiple effects of NO in neurotransmission. 相似文献
5.
Glycine was taken up by a synaptic vesicle fraction from spinal cord in a Mg-ATP-dependent manner. The accumulation of glycine was inhibited by carbonyl cyanide-m-chlorophenylhydrazone (CCCP) and nigericin, agents known to destroy the proton gradient across the vesicle membrane. Vesicular uptake of glycine was clearly different from synaptosomal uptake, with respect to both the affinity constant and the effect of Na+, ATP, CCCP, and temperature. Oligomycin and strychnine did not inhibit the vesicular uptake, showing that neither mitochondrial H(+)-ATPase nor binding to strychnine-sensitive glycine receptors was involved. It is suggested that the vesicular uptake of glycine is driven by a proton gradient generated by a Mg2(+)-ATPase. A low concentration of Cl- had little effect on the uptake of glycine, whereas the uptake of glutamate in the same experiment was highly stimulated. High concentrations of gamma-amino-n-butyric acid and beta-alanine inhibited vesicular glycine uptake, but glutamate did not. Accumulation of glycine was found to be fourfold higher in a spinal cord synaptic vesicle fraction than in a vesicle fraction from cerebral cortex. 相似文献
6.
Uptake of l-Glutamate into Rat Brain Synaptic Vesicles: Effect of Inhibitors that Bind Specifically to the Glutamate Transporter 总被引:2,自引:0,他引:2
Abstract: In this study we have described a series of new and potent inhibitors of the vesicular uptake of glutamate. The two most efficient inhibitors were the dyes Evans blue and Chicago Skye Blue 6B, which are structurally related to glutamate and were competitive inhibitors in the nanomolar range. The anion channel blocker 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (SITS) and the diuretics furosemide and bumetanide are inhibitors of chloride transport in other organs but were competitive inhibitors of glutamate and noncompetitive with respect to chloride ions. Evans blue, Chicago Skye Blue 6B, SITS, furosemide, and bumetanide are all large organic acids with two centers of negative charge and an electron-donating group at close vicinity of the negative charge at physiological pH. The inhibition of the glutamate uptake with these inhibitors was noncompetitive with respect to Cl− . The inhibitors, therefore, probably interact directly with the glutamate carrier. Bafilomycin A1 , which is a specific vacuolar ATPase inhibitor, was used as a control and inhibited the vesicular dopamine, glutamate, and GABA uptake to the same extent. None of the inhibitors had any effect on the plasma membrane carrier, which is therefore clearly different from the vesicular carrier. 相似文献
7.
Noncyclic fluorine-substituted and cyclic analogs of glutamic acid were tested for their ability to inhibit glutamate uptake
in isolated bovine presynaptic vesicles, in order to assess the specific structural requirements of the glutamate translocation
system in the vesicle membrane. Cyclic analogs that permitted close interaction between the positive and negative charges
of the glutamate molecule were effective inhibitors; maximum inhibitory potency was observed with L-trans-1-aminocyclopentane-1,3-dicarboxylic acid (l-t-ACPD), while d-t-ACPD was less active. Analogs with a larger or smaller ring (as in trans-1-aminocyclohexane-1,3-dicarboxylic acid or trans-1-aminocyclobutane-1,3-dicarboxylic acid) were also inhibitory, but somewhat less so. trans-ACPD was also taken up by the vesicles with a time course and ATP dependence similar to uptake of glutamate, and this uptake
was inhibited by glutamate. The K
m value for t-ACPD uptake was similar to its K
i for inhibition of glutamate uptake, while its rate of uptake was lower than that of glutamate. Fluorine-substituted noncyclic
analogs with substitutions at the 4-carbon were less effective than glutamic acid itself, although 4,4-difluoroglutamic acid
was equal in activity to the unsubstituted compound. Inhibition by these derivatives appeared to be competitive in nature,
and they probably were also transported by the vesicle uptake system.
Special issue article in honor of Dr. Frode Fonnum. 相似文献
8.
Glycolytic ATP synthesis by synaptic vesicles provides an efficient mechanism for fueling vesicular loading of the neurotransmitter glutamate. This is achieved in part by vesicle-bound pyruvate kinase. However, we have found that vesicular glutamate uptake, in the presence of the pyruvate kinase substrates ADP and phosphoenolpyruvate (PEP), substantially exceeds that caused by exogenous ATP. We propose that this much enhanced uptake is in part due to extra ATP produced via a mechanism involving a novel enzyme, PEP-dependent ADP synthase. We discuss implications for this enzyme in energy homeostasis and pathophysiology, as well as in efficient synaptic glutamate transmission. 相似文献
9.
Odile Miret-Duvaux Florence Frederic Dominique Simon Jean-Louis Guenet ré Hanauer† Nicole Delhaye-Bouchaud Jean Mariani 《Journal of neurochemistry》1990,54(1):23-29
Many similarities of both the inheritance pattern and the neuropathology can be observed between olivopontocerebellar atrophies, or so-called multiple system atrophies (MSAs), and murine cerebellar mutations like Purkinje cell degeneration, nervous, staggerer, weaver, and reeler. Our study aimed to test whether the glutamate dehydrogenase (GDH) deficiency observed in some MSA patients could be found also in any of the murine mutants. GDH activity was assayed in several organs of these mutants, and no general deficiency was detected. By contrast, the level was found to be elevated in the cerebellum. The GDH gene was localized on mouse chromosome 14 and does not map close to any known neurological mutation in the mouse. We conclude, for the moment, that none of these cerebellar mutant mice can be considered as an animal model for GDH-deficient MSA. 相似文献
10.
AH5183 and Cetiedil: Two Potent Inhibitors of Acetylcholine Uptake into Isolated Synaptic Vesicles from Torpedo marmorata 总被引:1,自引:3,他引:1
Synaptic vesicles purified on a sucrose-KCl sedimentation gradient were tested for their ability to accumulate [1-14C]acetylcholine ([1-14C]ACh) in the absence and in the presence of AH5183 and cetiedil. Kinetic studies of ACh transport showed that it was time dependent and saturable as a function of ACh concentration, with a KT of 1.2 mM. The protein-modifying agents N-ethylmaleimide and 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole were powerful inhibitors of ACh uptake. In agreement with other studies, AH5183 was found to be a potent inhibitor of ACh uptake by synaptic vesicles. Inhibition was of the mixed noncompetitive type, and the inhibition constant was 45.2 +/- 3.4 nM. Cetiedil, a drug that resembles ACh, was previously shown on intact nerve endings to inhibit the translocation of newly synthesized ACh into the synaptic vesicle compartment, and we demonstrate here that cetiedil is indeed an efficient blocker of ACh uptake by isolated synaptic vesicles. It acted as a competitive inhibitor, with a Ki of 118.5 +/- 9.5 nM. Neither ATP-dependent calcium uptake nor Mg2+-ATPase activity was affected by the drugs, a finding showing their specificity toward the ACh uptake process. The binding of L-[3H]AH5183 to intact vesicles was characterized in the absence or the presence of ACh or cetiedil. Saturation experiments showed a total binding capacity of approximately 126 pmol/mg of vesicular protein and a dissociation constant of 19.9 +/- 4.1 nM under control conditions.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
Abstract: o-rab3 is an electric ray homologue of low molecular weight GTP-binding proteins thought to be involved in targeting of secretory vesicles to sites of exocytosis. The stimulation-dependent association of o-rab3 with synaptic vesicles was compared with that of the membrane-integral synaptic vesicle protein 2 (SV2). On application of immunoelectron microscopy and the colloidal gold technique, antibodies against either protein labeled the synaptic vesicle membrane compartment. Synaptic vesicles recycled under conditions of low frequency stimulation (0.1 Hz) retained their complement of both SV2 and o-rab3. Isolation of synaptic vesicles by density-gradient centrifugation and subsequent column chromatography yielded no indication of a stimulation-dependent release of o-rab3 from synaptic vesicles. In contrast, multivesicular bodies and vacuoles occasionally observed in the nerve terminals contained SV2 but little if any o-rab3. It is concluded that o-rab3 remains associated with the synaptic vesicle membrane compartment during stimulation-induced cycles of repeated exo- and endocytosis. o-rab3 may be lost once the vesicle enters the prelysosomal pathway. 相似文献
12.
Abstract: Uptake of acetylcholine (ACh) by synaptic vesicles isolated from the electric organ of Torpedo was induced with an artificially imposed proton gradient. The gradient was formed by hyposmotic lysis and resealing of vesicles in a low pH buffer to form vesicular ghosts followed by sudden elevation of the pH of the ghost suspension. [3 H]ACh accumulated rapidly, the proton gradient collapsed spontaneously within 5 min as monitored by [14 C]methylamine uptake, and the accumulated ACh leaked out of the ghosts after 5 min. Vesamicol blocked both uptake and efflux of the [3 H]ACh, demonstrating that both processes are mediated by the ACh transporter. The protonophore nigericin also blocked uptake very potently. Specific uptake was titrated with variable concentrations of [3 H]ACh. It exhibited K m and V max values of ∼200–500 µ M and 7–30 nmol [3 H]ACh/mg at 5 min, respectively, which are values close to those commonly observed for ATP-dependent uptake by intact vesicles. Specific uptake by ghosts was titrated with variable internal pH and constant external pH. It exhibited maximal uptake between internal pH 4.5 and 5.5. The dependence was very steep and could be fit best by assuming that the active form of the transporter requires protonation of two internal sites of apparent pK value of 5.3 ± 0.2. A similar result was obtained when the uptake was titrated with variable internal pH with a constant thermodynamic driving force maintained by keeping the external pH ∼2.6 units higher. The origin of the transport inhibition that sets in at very low internal pH values is not clear. In vivo, the steep dependence of transport on the transmembrane pH gradient might serve to minimize leakage of ACh from the cytoplasm due to ACh transporter in the plasma membrane. 相似文献
13.
We have demonstrated previously that L-glutamate is taken up into isolated synaptic vesicles in an ATP-dependent manner, supporting the neurotransmitter role of this acidic amino acid. We now report that a nerve terminal cytosolic factor inhibits the ATP-dependent vesicular uptake of glutamate in a dose-dependent manner. This factor appears to be a protein with a molecular weight greater than 100,000, as estimated by size exclusion chromatography, and is precipitated by ammonium sulfate (40% saturation). The inhibitory factor is inactivated by heating to 100 degrees C. Proteolytic digestion of the ammonium sulfate fraction by trypsin or chymotrypsin did not reduce, but rather increased slightly, the inhibition of glutamate uptake. Unlike the native factor, the digest retained inhibitory activity after heating, suggesting that proteolytic digestion may generate active fragments. The inhibition of ATP-dependent vesicular glutamate uptake is not species-specific, as the factor obtained from both rat and bovine brains produced an equal degree of inhibition of glutamate uptake into vesicles of each species. These observations raise the possibility that vesicular uptake of glutamate may be regulated by an endogenous factor in vivo. 相似文献
14.
Senescence-Related Changes in ATP-Dependent Uptake of Calcium into Microsomal Vesicles from Carnation Petals 下载免费PDF全文
Microsomal membrane vesicles isolated from the petals of young carnation (Dianthus caryophyllus L. cv White Sim) flowers accumulate Ca2+ in the presence of ATP. The specific activity of ATP-dependent uptake is ~20 nanomoles per milligram of protein per 30 minutes. The membranes also hydrolyze ATP, but Ca2+ stimulation of ATP hydrolysis was not discernible above the high background of Ca2+-insensitive ATPase activity. The initial velocity of uptake showed a sigmoidal rise with increasing Ca2+ concentration, suggesting that Ca2+ serves both as substrate and activator for the enzyme complex mediating its uptake. The concentration of Ca2+ at half maximal velocity of uptake (S0.5) was 12.5 micromolar and the Hill coefficient (nH) was 2.5. The addition of calmodulin to membrane preparations that had been isolated in the presence of chelators did not promote ATP-dependent accumulation of Ca2+, although this may reflect the fact that the treatment with chelators did not fully remove endogenous calmodulin. Transport of Ca2+ into membrane vesicles was unaffected by 50 micromolar ruthenium red and 5 micromolar sodium azide, indicating that uptake is primarily into vesicles of non-mitochondrial origin. By subfractionating the microsomes on a linear sucrose gradient, it was established that the ATP-dependent Ca2+ transport activity comigrates with endoplasmic reticulum and plasma membrane. During post-harvest development of cut flowers, ATP-dependent uptake of Ca2+ into microsomal vesicles declined by ~70%. This occurred before the appearance of petal-inrolling and the climacteric-like rise in ethylene production, parameters that denote the onset of senescence. There were no significant changes during this period in S0.5 or nH, but Vmax for ATP-dependent Ca2+ uptake decreased by ~40%. A similar decline in ATP-dependent uptake of Ca2+ into microsomal vesicles was induced by treating young flowers with physiological levels of exogenous ethylene. 相似文献
15.
Mitochondria, Calcium Regulation, and Acute Glutamate Excitotoxicity in Cultured Cerebellar Granule Cells 总被引:17,自引:6,他引:17
Abstract: Exposure of cultured cerebellar granule cells to 100 µ M glutamate plus glycine in the absence of Mg2+ causes calcium loading of the in situ mitochondria and is excitotoxic, as demonstrated by a collapse of the cellular ATP/ADP ratio, cytoplasmic Ca2+ deregulation (the failure of the cell to maintain a stable cytoplasmic free Ca2+ concentration), and extensive cell death. Glutamate-evoked Ca2+ deregulation is exacerbated by the mitochondrial respiratory chain inhibitor rotenone. Cells maintained by glycolytic ATP, i.e., in the presence of the mitochondrial ATP synthase inhibitor oligomycin, remain viable for several hours but are still susceptible to glutamate; thus, disruption of mitochondrial ATP synthesis is not a necessary step in glutamate excitotoxicity. In contrast, the combination of rotenone (or antimycin A) plus oligomycin, which collapses the mitochondrial membrane potential, therefore preventing mitochondrial Ca2+ transport, allows glutamate-exposed cells to maintain a high ATP/ADP ratio while accumulating little 45 Ca2+ and maintaining a low bulk cytoplasmic free Ca2+ concentration determined by fura-2. It is concluded that mitochondrial Ca2+ accumulation is a necessary intermediate in glutamate excitotoxicity, whereas the decreased Ca2+ flux into cells with depolarized mitochondria may reflect a feedback inhibition of the NMDA receptor mediated by localized Ca2+ accumulation in a microdomain accessible to the mitochondria. 相似文献
16.
Rat brain synaptic plasma membranes were solubilised in either 1% Triton X-100 or potassium cholate and subjected to batch affinity adsorption on L-glutamate/bovine serum albumin reticulated glass fibre. The fibre was extensively washed, and bound proteins eluted with 0.1 mM L-glutamate in 0.1% detergent, followed by repeated dialysis to remove the glutamate from the eluted proteins. Aliquots of the dialysed extracts were assayed for L-[3H]glutamate binding activity in the presence or absence of 0.1 mM unlabelled L-glutamate (to define displaceable binding). Incubations were conducted at room temperature and terminated by rapid filtration through nitrocellulose membranes. Binding to solubilised fractions could be detected only following affinity chromatography. Binding was saturable and of relatively low affinity: KD = 1.0 and 1.8 microM for Triton X-100 and cholate extracts, respectively. The density of binding sites was remarkably high: approximately 18 nmol/mg protein for Triton X-100-solubilised preparations, and usually double this when cholate was employed. Analysis of structural requirements for inhibition of binding revealed that only a very restricted number of compounds were effective, i.e., L-glutamate, L-aspartate, and sulphur-containing amino acids. Binding was not inhibited significantly by any of the selective excitatory amino acid receptor agonists--quisqualate, N-methyl-D-aspartate, or kainate. The implication from this study is that the glutamate binding protein is similar if not identical to one previously isolated and probably is not related to the pharmacologically defined postsynaptic receptor subtypes, unless solubilisation of synaptic membranes resulted in major alterations to binding site characteristics. Since solubilisation with Triton X-100 is known to preserve synaptic junctional complexes, it seems likely that the origin of the glutamate binding protein may be extrajunctional, although its functional role is unknown. 相似文献
17.
Comparison of the Properties of γ-Aminobutyric Acid and L-Glutamate Uptake into Synaptic Vesicles Isolated from Rat Brain 总被引:3,自引:3,他引:0
Rat brain synaptic vesicles exhibit ATP-dependent uptake of gamma-[3H]amino-n-butyric acid ([3H]GABA) and L-[3H]glutamate. After hypotonic shock, the highest specific activities of uptake of both L-glutamate and GABA were recovered in the 0.4 M fraction of a sucrose gradient. The uptakes of L-glutamate and GABA were inhibited by similar, but not identical, concentrations of the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone and the ionophores nigericin and gramicidin, but they were not inhibited by the K+ carrier valinomycin. N,N'-Dicyclohexyl-carbodiimide and N-ethylmaleimide, Mg2+-ATPase inhibitors, inhibited the GABA and L-glutamate uptakes similarly. Low concentrations of Cl- stimulated the vesicular uptake of L-glutamate but not that of GABA. The uptakes of both L-glutamate and GABA were inhibited by high concentrations of Cl-. These results indicate that the vesicular GABA and L-glutamate uptakes are driven by an electrochemical proton gradient generated by a similar Mg2+-ATPase. The vesicular uptake mechanisms are discussed in relation to other vesicle uptake systems. 相似文献
18.
Javier Gualix Jesús Pintor & Maria Teresa Miras-Portugal 《Journal of neurochemistry》1999,73(3):1098-1104
ATP transport to synaptic vesicles from rat brain has been studied using the fluorescent substrate analogue 1,N6-ethenoadenosine 5'-triphosphate (epsilon-ATP). The increase in intravesicular concentration was time dependent for the first 30 min, epsilon-ATP being the most abundant nucleotide. The complexity of the saturation curve indicates the existence of kinetic and allosteric cooperativity in the nucleotide transport, which exhibits various affinity states with K0.5 values of 0.39 +/- 0.06 and 3.8 +/- 0.1 mM with epsilon-ATP as substrate. The Vmax values obtained were 13.5 +/- 1.4 pmol x min(-1) x mg of protein(-1) for the first curve and 28.3 +/- 1.6 pmol x min(-1) x mg of protein(-1) considering both components. This kinetic behavior can be explained on the basis of a mnemonic model. The nonhydrolyzable adenine nucleotide analogues adenosine 5'-O-3-(thiotriphosphate), adenosine 5'-O-2-(thiodiphosphate), and adenosine 5'-(beta,gamma-imino)triphosphate and the diadenosine polyphosphates P1,P3-di(adenosine)triphosphate, P1,P4-di(adenosine)tetraphosphate, and P1,P5-di(adenosine)pentaphosphate inhibited the nucleotide transport. The mitochondrial ATP/ADP exchange inhibitor atractyloside, N-ethylmaleimide, and polysulfonic aromatic compounds such as Evans blue and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid also inhibit epsilon-ATP vesicular transport. 相似文献
19.
Cerebellar granule cells were cocultured with astrocytes from either cerebral cortex or cerebellum in two different systems. In one system the cells were plated next to each other only sharing the culture medium (separated cocultures) and in the other system the granule cells were plated on top of a preformed layer of astrocytes (sandwich cocultures). Using astrocytes from cerebellum, granule cells developed morphologically and functionally showing a characteristic high activity of the glutamate synthesizing enzyme aspartate aminotransferase (AAT) as well as a high stimulus-coupled transmitter release regardless of the culture system, i.e., granule cells could grow on top of cerebellar astrocytes as well as next to these cells. In the case of cerebral cortex astrocytes it was found that cerebellar granule cells did not develop (11% survival) when seeded on top of these astrocytes. This was indicated by the morphological appearance of the cultures as well as by a negligible difference between the AAT activity in sandwich cocultures and astrocytes cultured alone. On the other hand, granule cells in separated cocultures with cerebral cortex astrocytes exhibited a normal morphology and a high activity of AAT as well as a large stimulus-coupled transmitter release. Cerebellar and cortical astrocytes expressed the astrocyte specific enzyme glutamine synthetase in a glucocorticoid-inducible form regardless of the culture system. The results show that under conditions of direct contact between granule cells and astrocytes, regional specificity exists with regard to neuron-glia contacts. This specificity does not seem to involve soluble factors present in the culture medium because in separated cocultures the cerebellar granule cells developed normally regardless of the regional origin of the astrocytes. 相似文献
20.
Synaptic vesicles are released from membranes during incubation at 37°C in the presence of ATP (adenosine triphosphate). The donor membranes are a rapidly sedimenting fraction derived from the neuroendocrine cell line PC12 (pheochromocytoma 12). These starting membranes contain the synaptic vesicle proteins, synaptophysin and SV2, and the endosomal markers transferrin receptor and cation-independent MPR (mannose 6-phosphate receptor). Incubating the membranes in vitro increased the amount of organelles that migrate as synaptic vesicles in velocity sedimentation gradients. The synaptic vesicle fractions that contain both synaptophysin and SV2 do not contain endosomal markers. A synaptic vesicle increase in vitro is time-, cytosol-, ATP- and temperature-dependent and is inhibited by NEM (N-ethylmaleimide), BFA (brefeldin A) and aluminum fluoride, but not GTPS (guanosine-5-O-C3-thiotriphosphate). The production of synaptic vesicles under these conditions is unlike the de novo generation of vesicles from endosomes (1). Incubation in vitro under the conditions described here may allow the final stages of synaptic vesicle formation, uncoating or undocking, to occur but not the initiation of formation de novo. 相似文献