首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou J  Aiken C 《Journal of virology》2001,75(13):5851-5859
The human immunodeficiency virus type 1 (HIV-1) accessory protein Nef stimulates viral infectivity by facilitating an early event in the HIV-1 life cycle. Although no structural or biochemical defects in Nef-defective HIV-1 particles have been demonstrated, the Nef protein is incorporated into HIV-1 particles. To localize the function of Nef within the virus particle, we developed a novel technology involving fusion of enveloped donor HIV-1 particles bearing core defects with envelope-defective target virions bearing HIV-1 receptors. Although neither virus alone was capable of infecting CD4(+) target cells, the incubation of donor and target virions prior to addition to target cells resulted in infection. This effect, termed "virion transcomplementation," required a functional Env protein on the donor virus and CD4 and an appropriate coreceptor on target virions. To provide evidence for intervirion fusion as the mechanism of complementation, experiments were performed using dual-enveloped HIV-1 particles bearing both HIV-1 and ecotropic murine leukemia virus (E-MLV) Env proteins as donor virions. Infection of CD4-negative target cells bearing E-MLV receptors was prevented by HIV-1 entry inhibitors when added before, but not after, incubation of donor and target virions prior to the addition to cells. When we used Nef(+) and Nef(-) donor and target virions, Nef enhanced infection when present in donor virions. In contrast, no effect of Nef was detected when present in the target virus. These results reveal a potential mechanism for enhancing HIV-1 diversity in vivo through the rescue of defective viral genomes and provide a novel genetic system for the functional analysis of virion-associated proteins in HIV-1 infection.  相似文献   

2.
BACKGROUND: Human immunodeficiency virus-1 (HIV-1) infection decreases the cell-surface expression of its cellular receptor, CD4, through the combined actions of Nef, Env and Vpu. Such functional convergence strongly suggests that CD4 downregulation is critical for optimal viral replication, yet the significance of this phenomenon has so far remained a puzzle. RESULTS: We show that high levels of CD4 on the surface of HIV-infected cells induce a dramatic reduction in the infectivity of released virions by the sequestering of the viral envelope by CD4. CD4 is able to accumulate in viral particles while at the same time blocking incorporation of Env into the virion. Nef and Vpu, through their ability to downregulate CD4, counteract this effect. CONCLUSIONS: The CD4-mediated 'envelope interference' described here probably explains the plurality of mechanisms developed by HIV to downregulate the cell-surface expression of its receptor.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1), human immunodeficiency virus type 2 (HIV-2), and simian immunodeficiency virus (SIV) are the etiological agents of acquired immunodeficiency syndrome (AIDS) in humans and a related disease in non-human primates. These viruses infect T cells and macrophages that express the surface glycoprotein, CD4, because this glycoprotein acts as a co-receptor for incoming virus particles. Once infection has occurred, however, the presence of CD4 poses problems for the virus life cycle, including the possibility of superinfection, premature binding of CD4 to nascent virus particles, and inhibition of virus release. Accordingly, primate immunodeficiency viruses have evolved at least two distinct mechanisms, mediated by the Nef and Vpu viral proteins, to "downregulate" CD4 in the host cells. Nef and Vpu are mainly expressed early and late, respectively, in the viral life cycle, ensuring continuous removal of CD4. Nef links mature CD4 to components of clathrin-dependent trafficking pathways at the plasma membrane, and perhaps in intracellular compartments, leading to internalization and delivery of CD4 to lysosomes for degradation. Vpu, on the other hand, interacts with newly-synthesized CD4 in the endoplasmic reticulum, linking CD4 to the SCF ubiquitin ligase and facilitating the entry of CD4 into the endoplasmic-reticulum-associated degradation pathway. These two mechanisms lead to a dramatic reduction of CD4 expression in infected cells and are essential for efficient virus replication and disease progression.  相似文献   

4.
J Hua  B R Cullen 《Journal of virology》1997,71(9):6742-6748
Although the Nef proteins encoded by human immunodeficiency virus type 1 (HIV-1) and simian immuno-deficiency virus (SIV) are known to induce the efficient internalization and degradation of cell surface CD4, it remains unclear whether this process involves a direct interaction between Nef and CD4. Here, we report that CD4 downregulation by HIV-1 and SIV Nef requires distinct but overlapping target sites within the CD4 intracytoplasmic domain. In particular, mutation of a glutamic acid residue located at CD4 residue 405 or of arginine and methionine residues located, respectively, at residue 406 and 407 results in a mutant CD4 protein that is efficiently downregulated by HIV-1 Nef but refractory to downregulation by SIV Nef. However, both HIV-1 and SIV Nef require an isoleucine located at residue 410 and the dileucine motif found at CD4 residues 413 and 414. CD4 downregulation induced by the Nef protein encoded by HIV-2 is shown to require a CD4 target sequence that is similar to, but distinct from, that observed with SIV Nef. These data explain the previous finding that the murine CD4 protein, which has an alanine at residue 405, is refractory to downregulation by SIV, but not HIV-1, Nef (J. L. Foster, S.J. Anderson, A. L. B. Frazier, and J. V. Garcia, Virology 201:373-379, 1994). In addition, these observations provide strong genetic support for the hypothesis that the Nef-mediated downregulation of cell surface CD4 requires a direct Nef-CD4 interaction.  相似文献   

5.
Viral protein U (Vpu) is a type 1 membrane-associated accessory protein that is unique to human immunodeficiency virus type 1 (HIV-1) and a subset of related simian immunodeficiency virus (SIV). The Vpu protein encoded by HIV-1 is associated with two primary functions during the viral life cycle. First, it contributes to HIV-1-induced CD4 receptor downregulation by mediating the proteasomal degradation of newly synthesized CD4 molecules in the endoplasmic reticulum (ER). Second, it enhances the release of progeny virions from infected cells by antagonizing Tetherin, an interferon (IFN)-regulated host restriction factor that directly cross-links virions on host cell-surface. This review will mostly focus on recent advances on the role of Vpu in CD4 downregulation and Tetherin antagonism and will discuss how these two functions may have impacted primate immunodeficiency virus cross-species transmission and the emergence of pandemic strain of HIV-1.  相似文献   

6.
Human immunodeficiencey virus, type 1 (HIV-1) encodes three proteins, Nef, Vpu, and gp160, that down-modulate surface expression of the CD4 receptor during viral infection. In the present study, we have investigated the role of CD4 down-modulation in the HIV-1 infection cycle, primarily from the perspective of Vpu function. We report here that, like Nef, Vpu-mediated CD4 degradation modulates positively HIV-1 infectivity. Our data reveal that accumulation of CD4 at the cell surface of Vpu-deficient HIV-1-producing cells leads to an efficient recruitment of CD4 into virions and to an impairment of viral infectivity. This CD4-mediated inhibition of viral infectivity was not observed when a CD4 mutant unable to bind Env gp120 was used or when VSV-G glycoprotein was utilized to pseudotype viruses, suggesting that an interaction between CD4 and gp120 is required for interference. Indeed, protein analysis of Vpu-defective viral particles reveals that CD4 recruitment is associated with an increased formation of gp120-CD4 complexes at the virion surface. Interestingly, we did not detect any difference at the level of total virion-associated Env glycoproteins between wild-type and Vpu-defective virus, indicating that accumulation of CD4 at the cell surface and recruitment of CD4 into Vpu-defective HIV-1 particles exert a negative effect on viral infectivity, most likely by promoting the formation of nonfunctional gp120-CD4 complexes at the virion surface. Finally, we show that both Vpu- and Nef-induced CD4 down-modulation activities are required for production of fully infectious particles in CD4+ T cell lines and primary cells, an observation that has clear implications for viral spread in vivo.  相似文献   

7.
The Nef protein enhances human immunodeficiency virus type 1 (HIV-1) replication through an unknown mechanism. We and others have previously reported that efficient HIV-1 replication in activated primary CD4(+) T cells depends on the ability of Nef to downregulate CD4 from the cell surface. Here we demonstrate that Nef greatly enhances the infectivity of HIV-1 particles produced in primary T cells. Nef-defective HIV-1 particles contained significantly reduced quantities of gp120 on their surface; however, Nef did not affect the levels of virion-associated gp41, indicating that Nef indirectly stabilizes the association of gp120 with gp41. Surprisingly, Nef was not required for efficient replication of viruses that use CCR5 for entry, nor did Nef influence the infectivity or gp120 content of these virions. Nef also inhibited the incorporation of CD4 into HIV-1 particles released from primary T cells. We propose that Nef, by downregulating cell surface CD4, enhances HIV-1 replication by inhibiting CD4-induced dissociation of gp120 from gp41. The preferential requirement for Nef in the replication of X4-tropic HIV-1 suggests that the ability of Nef to downregulate CD4 may be most important at later stages of disease when X4-tropic viruses emerge.  相似文献   

8.
9.
HIV: a new role for Nef in the spread of HIV.   总被引:5,自引:0,他引:5  
M Harris 《Current biology : CB》1999,9(12):R459-R461
The HIV Nef protein downregulates the cell-surface expression of the HIV receptor glycoprotein CD4, but the significance of this event has remained obscure. Recent data suggest that Nef reduces cell-surface CD4 to promote the efficient spread of the virus.  相似文献   

10.
The CD4 protein is required for the entry of human immunodeficiency virus (HIV) into target cells. Upon expression of the viral genome, three HIV-1 gene products participate in the removal of the primary viral receptor from the cell surface. To investigate the role of surface-CD4 in HIV replication, we have created a set of Jurkat cell lines which constitutively express surface levels of CD4 comparable to those found in peripheral blood lymphocytes and monocytes. Expression of low levels of CD4 on the surface of producer cells exerted an inhibitory effect on the infectivity of HIV-1 particles, whereas no differences in the amount of cell-free p24 antigen were observed. Higher levels of cell surface CD4 exerted a stronger inhibitory effect on infectivity, and also affected the release of free virus in experiments where the viral genomes were delivered by electrotransfection. The CD4-mediated inhibition of HIV-1 infectivity was not observed in experiments where the vesicular stomatitis virus G protein was used to pseudotype viruses, suggesting that an interaction between CD4 and gp120 is required for interference. In contrast, inhibition of particle release by high levels of cell-surface CD4 was not overcome by pseudotyping HIV-1 with foreign envelope proteins. Protein analysis of viral particles released from HIV-infected Jurkat-T cells revealed a CD4-dependent reduction in the incorporation of gp120. These results demonstrate that physiological levels of cell-surface CD4 interfere with HIV-1 replication in T cells by a mechanism that inhibits envelope incorporation into viral membranes, and therefore provide an explanation for the need to down-modulate the viral receptor in infected cells. Our findings have important implications for the spread of HIV in vivo and suggest that the CD4 down-modulation function may be an alternative target for therapeutic intervention.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1) Nef is a myristylated protein with a relative molecular mass of 27 kDa, is localized to the cytoplasmic surfaces of cellular membranes, and has been reported to down-modulate CD4 in human T cells. To understand the mechanism of HIV-1 Nef-mediated down-modulation of cell surface CD4, we expressed Nef protein in human T-cell line VB. Expression of HIV-1 Nef protein down-modulated surface CD4 molecules. In pulse-chase experiments, CD4 molecules in Nef-expressing cells were synthesized at normal levels. However, the bulk of newly synthesized CD4 protein was degraded with a half-life of approximately 6 h, compared with the 24-h half-life in control cells. This Nef-induced acceleration of CD4 turnover was inhibited by lysosomotropic agents NH4Cl and chloroquine as well as by the protease inhibitor leupeptin. Surface CD4 biotinylation experiments demonstrated that CD4 molecules in Nef-expressing T cells are transported to the plasma membrane with normal kinetics but are then rapidly internalized. Therefore, HIV-1 Nef-induced down-modulation of CD4 is due to rapid internalization of surface CD4 and subsequent degradation by an acid-dependent process, potentially lysosomal. Additionally, in a Nef-expressing cell, we find accelerated dissociation of the T-cell tyrosine kinase p56lck and CD4 but only after the complex reaches the plasma membrane. This implies that HIV-1 Nef protein might play a role in triggering a series of T-cell activation-like events, which contribute to p56lck dissociation and internalization of surface CD4 molecules.  相似文献   

12.
Nef is an accessory protein of human immunodeficiency virus type 1 (HIV-1) that enhances the infectivity of progeny virions when expressed in virus-producing cells. The requirement for Nef for optimal infectivity is, at least in part, determined by the envelope (Env) glycoprotein, because it can be eliminated by pseudotyping HIV-1 particles with pH-dependent Env proteins. To investigate the role of Env in the function of Nef, we have examined the effect of Nef on the infectivity of Env-deficient HIV-1 particles pseudotyped with viral receptors for cells expressing cognate Env proteins. We found that Nef significantly enhances the infectivity of CD4-chemokine receptor pseudotypes for cells expressing HIV-1 Env. Nef also increased the infectivity of HIV-1 particles pseudotyped with Tva, the receptor for subgroup A Rous sarcoma virus (RSV-A), even though Nef had no effect if the pH-dependent Env protein of RSV-A was used for pseudotyping. However, Nef does not always enhance viral infectivity if the normal orientation of the Env-receptor interaction is reversed, because the entry of Env-deficient HIV-1 into cells expressing the vesicular stomatitis virus G protein was unaffected by Nef. Together, our results demonstrate that the presence of a viral Env protein during virus production is not required for the ability of Nef to increase viral infectivity. Furthermore, since the infectivity of Tva pseudotypes was blocked by inhibitors of endosomal acidification, we conclude that low-pH-dependent entry does not always bypass the requirement for Nef.  相似文献   

13.
Interactions between the viral envelope glycoprotein gp120 and the cell surface receptor CD4 are responsible for the entry of human immunodeficiency virus type 1 (HIV-1) into host cells in the vast majority of cases. HIV-1 replication is commonly followed by the disappearance or receptor downmodulation of cell surface CD4. This potentially renders cells nonsusceptible to subsequent infection by HIV-1, as well as by other viruses that use CD4 as a portal of entry. Disappearance of CD4 from the cell surface is mediated by several different viral proteins that act at various stages through the course of the viral life cycle, and it occurs in T-cell lines, peripheral blood CD4+ lymphocytes, and monocytes of both primary and cell line origin. At the cell surface, gp120 itself and in the form of antigen-antibody complexes can trigger cellular pathways leading to CD4 internalization. Intracellularly, the mechanisms leading to CD4 downmodulation by HIV-1 are multiple and complex; these include degradation of CD4 by Vpu, formation of intracellular complexes between CD4 and the envelope precursor gp160, and internalization by the Nef protein. Each of the above doubtless contributes to the ultimate depletion of cell surface CD4, although the relative contribution of each mechanism and the manner in which they interact remain to be definitively established.  相似文献   

14.
Tardif MR  Tremblay MJ 《Journal of virology》2003,77(22):12299-12309
Although there is now convincing evidence that the infectivity of human immunodeficiency virus type 1 (HIV-1) is increased by incorporation of host intercellular adhesion molecule 1 (ICAM-1) in budding virions, the exact mechanism(s) through which ICAM-1 can so significantly affect HIV-1 biology remains obscure. To address this question, we focused our attention on the most proximal events in the virus life cycle. We made comparative analyses to estimate attachment and internalization of isogenic HIV-1 particles either lacking or bearing host-derived ICAM-1. Using attachment-and-entry assays and confocal fluorescence microscopy, we found that virus binding and uptake were both markedly enhanced by insertion of ICAM-1 within the virus envelope when PM1 lymphoid cells and primary human cells (i.e., peripheral blood lymphocytes and purified CD4(+) T cells) were used as targets. Moreover, ICAM-1-bearing virions entered cells with faster uptake kinetics than viruses devoid of ICAM-1. Experiments conducted with fully competent viruses further confirmed the positive effect of virion-anchored host ICAM-1 on HIV-1 replication. Interestingly, subcellular-fractionation assays revealed that ICAM-1 incorporation modifies the HIV-1 entry route by increasing the level of viral material released in the cytosol, a process of internalization known to be mediated mainly by pH-independent membrane fusion and to result in productive infection. A virion-based fusion assay confirmed that the acquisition of ICAM-1 increases the efficiency of productive HIV-1 entry in primary CD4(+) T lymphocytes. These observations provide new insights into how interactions other than those with gp120 and CD4-coreceptor complex can modulate the process of productive HIV-1 infection in CD4(+) T lymphocytes, a cell target highly relevant to HIV-1 pathogenesis.  相似文献   

15.
Nef is a HIV-1 accessory protein critical for the replication of the virus and the development of AIDS. The major pathological activity of Nef is the down-regulation of CD4, the primary receptor of HIV-1 infection. The mechanism underlying Nef-mediated CD4 endocytosis and degradation remains incompletely understood. Since protein ubiquitination is the predominant sorting signal in receptor endocytosis, we investigated whether Nef is ubiquitinated. The in vivo ubiquitination assay showed that both HIV-1 and SIV Nef proteins expressed in Jurkat T cells and 293T cells were multiple ubiquitinated by ubiquitin-His. The lysine-free HIV-1 Nef mutant (Delta10K) generated by replacing all 10 lysines with arginines was not ubiquitinated and the major ubiquitin-His attachment sites in HIV-1 Nef were determined to be lysine 144 (di-ubiquitinated) and lysine 204 (mono-ubiquitinated). Lysine-free HIV-1 Nef was completely inactive in Nef-mediated CD4 down-regulation, so was the Nef mutant with a single arginine substitution at K144 but not at K204. A mutant HIV-1 provirion NL4-3 with a single arginine substitution in Nef at K144 was also inactive in Nef-mediated CD4 down-regulation. Lysine-free Nef mutant reintroduced with lysine 144 (DeltaK10 + K144) was shown active in CD4 down-regulation. These data suggest that ubiquitination of Nef, particularly diubiquitination of the lysine 144, is necessary for Nef-mediated CD4 down-regulation.  相似文献   

16.
The atypical Nef protein (NefF12) from human immunodeficiency virus type 1 strain F12 (HIV-1(F12)) interferes with virion production and infectivity via a mysterious mechanism. The correlation of these effects with the unusual perinuclear subcellular localization of NefF12 suggested that the wild-type Nef protein could bind to assembly intermediates in late stages of viral replication. To test this hypothesis, Nef from HIV-1(NL4-3) was fused to an endoplasmic reticulum (ER) retention signal (NefKKXX). This mutant NefKKXX protein recapitulated fully the effects of NefF12 on on Gag processing and virion production, either alone or as a CD8 fusion protein. Importantly, the mutant NefKKXX protein also localized to the intermediate compartment, between the ER and the trans-Golgi network. Furthermore, Nef bound the GagPol polyprotein in vitro and in vivo. This binding mapped to the C-terminal flexible loop in Nef and the transframe p6* protein in GagPol. The significance of this interaction was demonstrated by a genetic assay in which the release of a mutant HIV-1 provirus lacking the PTAP motif in the late domain that no longer binds Tsg101 was rescued by a Nef.Tsg101 chimera. Importantly, this rescue as well as incorporation of Nef into HIV-1 virions correlated with the ability of Nef to interact with GagPol. Our data demonstrate that the retention of Nef in the intermediate compartment interferes with viral replication and suggest a new role for Nef in the production of HIV-1.  相似文献   

17.
One well-characterized in vitro function of Nef is its ability to remove CD4, the human immunodeficiency virus (HIV) receptor, from the cell surface. Nef accomplishes this by accelerating the internalization and degradation of CD4. Current models propose that Nef promotes CD4 internalization via an increased association of CD4 with clathrin-coated pits (CCP). Here, we investigated the effect of a naturally occurring antiprotozoan antibiotic, ikarugamycin (IKA), on CD4 cell surface expression in human monocytic cells stably expressing HIV type 1 SF2 Nef. IKA was able to efficiently restore CD4 cell surface expression in Nef-expressing cells without affecting either CD4 synthesis or Nef expression. In addition, we demonstrate that IKA is also capable of efficiently blocking CD4 down-modulation in response to phorbol myristate acetate. Our data suggest that IKA may be an efficient and useful inhibitor of CCP-dependent endocytosis.  相似文献   

18.
nef genes from two laboratory grown human immunodeficiency virus type 1 (HIV-1) strains and from two proviruses that had not been propagated in vitro were introduced into CD4+ lymphoblastoid CEM cells. The stable expression of all four Nef proteins was associated with an almost complete abrogation of CD4 cell surface localization. The consequences of the presence of Nef on gp160 cleavage, gp120 surface localization, and envelope-induced cytopathic effect were examined in CEM cells in which the HIV-1 env gene was expressed from a vaccinia virus vector. The presence of Nef did not modify the processing of gp160 into its subunits but resulted in a significant decrease of cell surface levels of gp120, associated with a dramatic reduction of the fusion-mediated cell death. Surface levels of mutant envelope glycoproteins unable to bind CD4 were not altered in Nef-expressing cells, suggesting that the phenomenon was CD4 dependent. The intracellular accumulation of fully processed envelope glycoproteins could significantly delay the cytopathic effect associated with envelope surface expression in HIV-infected cells and may be relevant to the selective advantage associated with Nef during the in vivo infectious process.  相似文献   

19.
20.
The human immunodeficiency virus type 1 (HIV-1) Nef protein is an important virulence factor. Nef has several functions, including down-modulation of CD4 and class I major histocompatibility complex cell surface expression, enhancement of virion infectivity, and stimulation of viral replication in peripheral blood mononuclear cells. Nef also increases HIV-1 replication in human lymphoid tissue (HLT) ex vivo. We analyzed recombinant and primary nef alleles with highly divergent activity in different in vitro assays to clarify which of these Nef activities are functionally linked. Our results demonstrate that Nef activity in CD4 down-regulation correlates significantly with the efficiency of HIV-1 replication and with the severity of CD4(+) T-cell depletion in HLT. In conclusion, HIV-1 Nef variants with increased activity in CD4 down-modulation would cause severe depletion of CD4(+) T cells in lymphoid tissues and accelerate AIDS progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号