首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
XPF forms a heterodimeric complex with ERCC1 and is required for the repair of DNA interstrand cross-links. In association with ERCC1, it is involved in production of the 5' incision at the site of a psoralen interstrand cross-link as well as the 3' incision. The present study was carried out to determine the functional domains of XPF that are important in the production of the 5' and 3' incisions that occur at a site of a psoralen interstrand cross-link. Monoclonal antibodies (mAbs) were utilized that had been generated against polypeptide fragments of XPF and affinity-mapped to specific regions of XPF. These mAbs were examined for their ability to differentially inhibit production of dual incisions in DNA by normal human chromatin-associated protein extracts that contain XPF and ERCC1. These studies show that two regions of XPF, one N-terminal region from amino acids 12-166 and one C-terminal region from amino acids 702-854, are the most important in the production of the 5' incision. The same N-terminal region and the C-terminal region from amino acids 702-916 are also involved in the 3' incision, though to a much lesser extent. Since this C-terminal region corresponds to the proposed site of interaction of ERCC1 with XPF, these results suggest that binding of ERCC1 to XPF is critical for its ability to produce the 5' and 3' incisions at the site of an interstrand cross-link, possibly through activation or regulation of the endonucleolytic activity of the N-terminal domain of XPF.  相似文献   

2.
Fanconi anemia (FA) is an autosomal or X-linked recessive disorder characterized by chromosomal instability, bone marrow failure, cancer susceptibility, and a profound sensitivity to agents that produce DNA interstrand cross-link (ICL). To date, 15 genes have been identified that, when mutated, result in FA or an FA-like syndrome. It is believed that cellular resistance to DNA interstrand cross-linking agents requires all 15 FA or FA-like proteins. Here, we review our current understanding of how these FA proteins participate in ICL repair and discuss the molecular mechanisms that regulate the FA pathway to maintain genome stability.  相似文献   

3.
The disease Fanconi anemia is a genome instability syndrome characterized by cellular sensitivity to DNA interstrand cross-linking agents, manifest by decreased cellular survival and chromosomal aberrations after such treatment. There are at least 13 proteins acting in the pathway, with the FANCD2 protein apparently functioning as a late term effecter in the maintenance of genome stability. We find that the chromatin remodeling protein, Tip60, interacts directly with the FANCD2 protein in a yeast two-hybrid system. This interaction has been confirmed by co-immunoprecipitation and co-localization using both endogenous and epitope-tagged FANCD2 and Tip60 from human cells. The observation of decreased cellular survival after exposure to mitomycin C in normal fibroblasts depleted for Tip60 indicates a direct function in interstrand cross-link repair. The coincident function of Tip60 and FANCD2 in one pathway is supported by the finding that depletion of Tip60 in Fanconi anemia cells does not increase sensitivity to DNA cross-links. However, depletion of Tip60 did not reduce monoubiquitination of FANCD2 or its localization to nuclear foci following DNA damage. The observations indicate that Fanconi anemia proteins act in concert with chromatin remodeling functions to maintain genome stability after DNA cross-link damage.  相似文献   

4.
A critical step in DNA interstrand cross-link repair is the programmed collapse of replication forks that have stalled at an ICL. This event is regulated by the Fanconi anemia pathway, which suppresses bone marrow failure and cancer. In this perspective, we focus on the structure of forks that have stalled at ICLs, how these structures might be incised by endonucleases, and how incision is regulated by the Fanconi anemia pathway.  相似文献   

5.
The Fanconi anemia pathway and the DNA interstrand cross-links repair   总被引:4,自引:0,他引:4  
Rosselli F  Briot D  Pichierri P 《Biochimie》2003,85(11):1175-1184
Fanconi anemia (FA) is a genetic cancer-predisposition syndrome characterized by bone marrow failure and cellular and chromosomal hypersensitivity to DNA cross-linking agents. Seven FA genes have been isolated and their products associate to form a pathway that interacts functionally or physically with several DNA-damage response proteins involved in cell cycle checkpoints and/or DNA repair. These proteins include BLM, ATM, BRCA1, XPF and the MRE11/RAD50/NBS1 complex. In spite of several recent striking progresses in the biochemistry and the molecular biology of the disorder, the precise function(s) of the FA proteins remain(s) poorly determined. However, several recent data indicate that the FA pathway could be involved in the coordination of both cell cycle checkpoints and DNA repair.  相似文献   

6.
The C4'-oxidized abasic site (C4-AP) forms two types of interstrand cross-links with the adjacent nucleotides in DNA. Previous experiments revealed that dG does not react with the lesion and that formation of one type of cross-link is catalyzed by the opposing dA. iso-Guanosine·dC and 2-aminopurine·dT base pairs were used to determine why dG does not cross-link with C4-AP despite its well known reactivity with other bis-electrophiles. 7-Deaza-2'-deoxyadenosine was used to probe the role of the nucleotide opposite C4-AP in the catalysis of interstrand cross-link formation.  相似文献   

7.
cis-diamminedichloroplatinum (II) (cisplatin) is a powerful anti-tumor drug whose target is cellular DNA. In the reaction between DNA and cisplatin, covalent intrastrand and interstrand cross-links (ICL) are formed. Two solution structures of the ICL have been published recently. In both models the double-helix is bent and unwound but with significantly different angle values. We solved the crystal structure at 100K of a double-stranded DNA decamer containing a single cisplatin ICL, using the anomalous scattering (MAD) of platinum as a unique source of phase information. We found 47 degrees for double-helix bending and 70 degrees for unwinding in agreement with previous electrophoretic assays. The crystals are stabilized by intermolecular contacts involving two cytosines extruded from the double-helix, one of which makes a triplet with a terminal G.C pair. The platinum coordination is nearly square and the platinum residue is embedded into a cage of nine water molecules linked to the cross-linked guanines, to the two amine groups, and to the phosphodiester backbone through other water molecules. This water molecule organization is discussed in relation with the chemical stability of the ICL.  相似文献   

8.
Short DNA duplexes that contain a N4C-ethyl-N4C interstrand cross-link were prepared on controlled pore glass supports using a DNA synthesizer. The C-C cross-link was introduced via a convertible nucleoside on the support or by using a protected C-C cross-link phosphoramidite. An orthogonal protection scheme allowed selective chain growth in either a 3'-->5' or 5'-->3' direction. The cross-linked duplexes were purified by HPLC and characterized by MALDI-TOF mass spectrometry and/or by enzymatic digestion.  相似文献   

9.
The anticancer drug cisplatin reacts with DNA leading to the formation of interstrand and intrastrand cross-links that are the critical cytotoxic lesions. In contrast to cells bearing mutations in other components of the nucleotide excision repair apparatus (XPB, XPD, XPG and CSB), cells defective for the ERCC1-XPF structure-specific nuclease are highly sensitive to cisplatin. To determine if the extreme sensitivity of XPF and ERCC1 cells to cisplatin results from specific defects in the repair of either intrastrand or interstrand cross-links we measured the elimination of both lesions in a range of nucleotide excision repair Chinese hamster mutant cell lines, including XPF- and ERCC1-defective cells. Compared to the parental, repair-proficient cell line all the mutants tested were defective in the elimination of both classes of adduct despite their very different levels of increased sensitivity. Consequently, there is no clear relationship between initial incisions at interstrand cross-links or removal of intrastrand adducts and cellular sensitivity. These results demonstrate that the high cisplatin sensitivity of ERCC1 and XPF cells likely results from a defect other than in excision repair. In contrast to other conventional DNA cross-linking agents, we found that the repair of cisplatin adducts does not involve the formation of DNA double-strand breaks. Surprisingly, XRCC2 and XRCC3 cells are defective in the uncoupling step of cisplatin interstrand cross-link repair, suggesting that homologous recombination might be initiated prior to excision of this type of cross-link.  相似文献   

10.
The processing of stalled forks caused by DNA interstrand cross-links (ICLs) has been proposed to be an important step in initiating mammalian ICL repair. To investigate a role of the XPF-ERCC1 complex in this process, we designed a model substrate DNA with a single psoralen ICL at a three-way junction (Y-shaped DNA), which mimics a stalled fork structure. We found that the XPF-ERCC1 complex makes an incision 5' to a psoralen lesion on Y-shaped DNA in a damage-dependent manner. Furthermore, the XPF-ERCC1 complex generates an ICL-specific incision on the 3'-side of an ICL. The ICL-specific 3'-incision, along with the 5'-incision, on the cross-linked Y-shaped DNA resulted in the separation of the two cross-linked strands (the unhooking of the ICL) and the induction of a double strand break near the cross-linked site. These results implicate the XPF-ERCC1 complex in initiating ICL repair by unhooking the ICL, which simultaneously induces a double strand break at a stalled fork.  相似文献   

11.
Nitrous acid is a mutagenic agent. It can induce interstrand cross-links in duplex DNA, preferentially at d(CpG) steps: two guanines on opposite strands are linked via a single shared exocyclic imino group. Recent synthetic advances have led to the production of large quantities of such structurally homogenous cross-linked duplex DNA. Here we present the high resolution solution structure of the cross-linked dodecamer [d(GCATCCGGATGC)]2 (the cross-linked guanines are underlined), determined by 2D NMR spectroscopy, distance geometry, restrained molecular dynamics and iterative NOE refinement. The cross-linked guanines form a nearly planar covalently linked 'G:G base pair' with only minor propeller twisting, while the cytidine bases of their normal base pairing partners have been flipped out of the helix and adopt well defined extrahelical positions in the minor groove. On the 5'-side of the cross-link, the minor groove is widened to accommodate these extrahelical bases, and the major groove becomes quite narrow at the cross-link. The cross-linked 'G:G base pair' is well stacked on the spatially adjacent C:G base pairs, particularly on the 3'-side guanines. In addition to providing the first structure of a nitrous acid cross-link in DNA, these studies could be of major importance to the understanding of the mechanisms of nitrous acid cross-linking and mutagenicity, as well as the mechanisms responsible for its repair in intracellular environments. It is also the shortest DNA cross-link structure to be described.  相似文献   

12.
Fanconi anemia (FA) is an autosomal disorder that causes genome instability. FA patients suffer developmental abnormalities, early-onset bone marrow failure, and a predisposition to cancer. The disease is manifested by defects in DNA repair, hypersensitivity to DNA crosslinking agents, and a high degree of chromosomal aberrations. The FA pathway comprises 13 disease-causing genes involved in maintaining genomic stability. The fast pace of study of the novel DNA damage network has led to the constant discovery of new FA-like genes involved in the pathway that when mutated lead to similar disorders. A majority of the FA proteins act as signal transducers and scaffolding proteins to employ other pathways to repair DNA. This review discusses what is known about the FA proteins and other recently linked FA-like proteins. The goal is to clarify how the proteins work together to carry out interstrand crosslink repair and homologous recombination-mediated repair of damaged DNA.  相似文献   

13.
14.
The Fanconi anemia/BRCA pathway: a coordinator of cross-link repair   总被引:1,自引:0,他引:1  
Fanconi anemia (FA) is a rare inherited disease characterized by genomic instability and markedly increased cancer risk. Efforts to elucidate the molecular basis of FA have unearthed a novel DNA damage response pathway, the integrity of which is critical for cellular resistance to DNA cross-linking agents. Despite significant progress in uncovering the molecular events underlying FA, the precise function of this pathway in DNA repair is unknown. This article will review evidence implicating FA proteins in multiple aspects of DNA cross-link repair and propose a model to explain the selectivity of the FA pathway toward DNA cross-linking agents.  相似文献   

15.
DNA interstrand crosslinks (ICLs) are cytotoxic lesions that threaten genome integrity. The Fanconi anemia (FA) pathway orchestrates ICL repair during DNA replication, with ubiquitylated FANCI‐FANCD2 (ID2) marking the activation step that triggers incisions on DNA to unhook the ICL. Restoration of intact DNA requires the coordinated actions of polymerase ζ (Polζ)‐mediated translesion synthesis (TLS) and homologous recombination (HR). While the proteins mediating FA pathway activation have been well characterized, the effectors regulating repair pathway choice to promote error‐free ICL resolution remain poorly defined. Here, we uncover an indispensable role of SCAI in ensuring error‐free ICL repair upon activation of the FA pathway. We show that SCAI forms a complex with Polζ and localizes to ICLs during DNA replication. SCAI‐deficient cells are exquisitely sensitive to ICL‐inducing drugs and display major hallmarks of FA gene inactivation. In the absence of SCAI, HR‐mediated ICL repair is defective, and breaks are instead re‐ligated by polymerase θ‐dependent microhomology‐mediated end‐joining, generating deletions spanning the ICL site and radial chromosomes. Our work establishes SCAI as an integral FA pathway component, acting at the interface between TLS and HR to promote error‐free ICL repair.  相似文献   

16.
Fanconi anemia (FA) is a recessive disorder associated with diverse congenital anomalies, progressive bone marrow failure, and a marked predisposition to develop cancer. At the cellular level, FA is characterized by a prolonged G(2) phase in proliferating cells and a marked hypersensitivity to both the cytotoxic and the clastogenic effects of agents which produce DNA interstrand cross-links. Treatment with these agents leads to even further prolongation of the G(2) phase in FA cells. We now show that FA cells, from four different complementation groups, fail to decrease their rates of replicative DNA synthesis, as do normal cells, following treatment with a DNA cross-linking agent. This may be responsible for the prolongation of the G2 phase seen in these cells, and suggests that the fundamental defect in response of FA cells to DNA cross-linking agents may be in the S phase, rather than the G(2) phase, of the cell cycle.  相似文献   

17.
When DNA replication is stalled at sites of DNA damage, a cascade of responses is activated in the cell to halt cell cycle progression and promote DNA repair. A pathway initiated by the kinase Ataxia teleangiectasia and Rad3 related (ATR) and its partner ATR interacting protein (ATRIP) plays an important role in this response. The Fanconi anemia (FA) pathway is also activated following genomic stress, and defects in this pathway cause a cancer-prone hematologic disorder in humans. Little is known about how these two pathways are coordinated. We report here that following cellular exposure to DNA cross-linking damage, the FA core complex enhances binding and localization of ATRIP within damaged chromatin. In cells lacking the core complex, ATR-mediated phosphorylation of two functional response targets, ATRIP and FANCI, is defective. We also provide evidence that the canonical ATR activation pathway involving RAD17 and TOPBP1 is largely dispensable for the FA pathway activation. Indeed DT40 mutant cells lacking both RAD17 and FANCD2 were synergistically more sensitive to cisplatin compared with either single mutant. Collectively, these data reveal new aspects of the interplay between regulation of ATR-ATRIP kinase and activation of the FA pathway.  相似文献   

18.
Repair of interstrand DNA cross-links (ICLs) in Escherichia coli can occur through a combination of nucleotide excision repair (NER) and homologous recombination. However, an alternative mechanism has been proposed in which repair is initiated by NER followed by translesion DNA synthesis (TLS) and completed through another round of NER. Using site-specifically modified oligodeoxynucleotides that serve as a model for potential repair intermediates following incision by E. coli NER proteins, the ability of E. coli DNA polymerases (pol) II and IV to catalyze TLS past N(2)-N(2)-guanine ICLs was determined. No biochemical evidence was found suggesting that pol II could bypass these lesions. In contrast, pol IV could catalyze TLS when the nucleotides that are 5' to the cross-link were removed. The efficiency of TLS was further increased when the nucleotides 3' to the cross-linked site were also removed. The correct nucleotide, C, was preferentially incorporated opposite the lesion. When E. coli cells were transformed with a vector carrying a site-specific N(2)-N(2)-guanine ICL, the transformation efficiency of a pol II-deficient strain was indistinguishable from that of the wild type. However, the ability to replicate the modified vector DNA was nearly abolished in a pol IV-deficient strain. These data strongly suggest that pol IV is responsible for TLS past N(2)-N(2)-guanine ICLs.  相似文献   

19.
Several proteins that specifically bind to DNA modified by cisplatin, including those containing HMG-domains, mediate antitumor activity of this drug. Oligodeoxyribonucleotide duplexes containing a single, site-specific interstrand cross-link of cisplatin were probed for recognition by the rat chromosomal protein HMGB1 and its domains A and B using the electrophoretic mobility-shift assay. It has been found that the full-length HMGB1 protein and its domain B to which the lysine-rich region (seven amino acid residues) of the A/B linker is attached at the N-terminus (the domain HMGB1b7) specifically recognize DNA interstrand cross-linked by cisplatin. The affinity of these proteins to the interstrand cross-link of cisplatin is not very different from that to the major 1,2-GG intrastrand cross-link of this drug. In contrast, no recognition of the interstrand cross-link by the domain B lacking this region or by the domain A with or without this lysine-rich region attached to its C-terminus is noticed under conditions when these proteins readily bind to 1,2-GG intrastrand adduct. A structural model for the complex formed between the interstrand cross-linked DNA and the domain HMGB1b7 was constructed and refined using molecular mechanics and molecular dynamics techniques. The calculated accessible areas around the deoxyribose protons correlate well with the experimental hydroxyl radical footprint. The model suggests that the only major adaptation necessary for obtaining excellent surface complementarity is extra DNA unwinding (approximately 40 degrees ) at the site of the cross-link. The model structure is consistent with the hypothesis that the enhancement of binding affinity afforded by the basic lysine-rich A/B linker is a consequence of its tight binding to the sugar-phosphate backbone of both DNA strands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号