首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The adsorption equilibria of bovine serum albumin (BSA), gamma-globulin, and lysozyme to three kinds of Cibacron blue 3GA (CB)-modified agarose gels, 6% agarose gel-coated steel heads (6AS), Sepharose CL-6B, and a home-made 4% agarose gel (4AB), were studied. We show that ionic strength has irregular effects on BSA adsorption to the CB-modified affinity gels by affecting the interactions between the negatively charged protein and CB as well as CB and the support matrix. At low salt concentrations, the increase in ionic strength decreases the electrostatic repulsion between negatively charged BSA and the negatively charged gel surfaces, thus resulting in the increase of BSA adsorption. This tendency depends on the pore size of the solid matrix, CB coupling density, and the net negative charges of proteins (or aqueous - phase pH value). Sepharose gel has larger average pore size, so the electrostatic repulsion-effected protein exclusion from the small gel pores is observed only for the affinity adsorbent with high CB coupling density (15.4 micromol/mL) at very low ionic strength (NaCl concentration below 0.05 M in 10 mM Tris-HCl buffer, pH 7.5). However, because CB-6AS and CB-4AB have a smaller pore size, the electrostatic exclusion effect can be found at NaCl concentrations of up to 0.2 M. The electrostatic exclusion effect is even found for CB-6AS with a CB density as low as 2.38 micromol/mL. Moreover, the electrostatic exclusion effect decreases with decreasing aqueous-phase pH due to the decrease of the net negative charges of the protein. For gamma-globulin and lysozyme with higher isoelectric points than BSA, the electrostatic exclusion effect is not observed. At higher ionic strength, protein adsorption to the CB-modified adsorbents decreases with increasing ionic strength. It is concluded that the hydrophobic interaction between CB molecules and the support matrix increases with increasing ionic strength, leading to the decrease of ligand density accessible to proteins, and then the decrease of protein adsorption. Thus, due to the hybrid effect of electrostatic and hydrophobic interactions, in most cases studied there exists a salt concentration to maximize BSA adsorption.  相似文献   

2.
Molecular and functional properties of DNA topoisomerase I isolated from a hydrogen-oxidizing bacterium, Alcaligenes eutrophus H16, were investigated. Under native conditions the enzyme forms a monomer with a relative molar mass of 98.500. A rod-like shape of the molecule was derived from the calculated frictional coefficient. The isoelectric point of the enzyme was determined to be in the range of 7.6–8.0. The enzyme activity is strictly Mg2+ dependent with an optimum at 3 mM Mg2+. The pH optimum ranges within 7.5–9.0. A. eutrophus DNA topoisomerase I activity is inhibited by M13 ssDNA, high ionic strength, polyamines, heparin and by a number of intercalating drugs.Abbreviations DTT dithiothreitol - BSA bovine serum albumin - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate - Tris tris(hydroxymethyl)aminomethane - PMSF phenylmethanesulfonyl fluoride - PAGE polyacrylamide gel electrophoresis  相似文献   

3.
The purpose of the presented study is to understand the physicochemical properties of proteins in aqueous solutions in order to identify solution conditions with reduced attractive protein-protein interactions, to avoid the formation of protein aggregates and to increase protein solubility. This is assessed by measuring the osmotic second virial coefficient (B22), a parameter of solution non-ideality, which is obtained using self-interaction chromatography. The model protein is lysozyme. The influence of various solution conditions on B22 was investigated: protonation degree, ionic strength, pharmaceutical relevant excipients and combinations thereof. Under acidic solution conditions B22 is positive, favoring protein repulsion. A similar trend is observed for the variation of the NaCl concentration, showing that with increasing the ionic strength protein attraction is more likely. B22 decreases and becomes negative. Thus, solution conditions are obtained favoring attractive protein-protein interactions. The B22 parameter also reflects, in general, the influence of the salts of the Hofmeister series with regard to their salting-in/salting-out effect. It is also shown that B22 correlates with protein solubility as well as physical protein stability.  相似文献   

4.
The interaction of gum arabic (GA) and bovine serum albumin (BSA) has been investigated through turbidity and light scattering intensity measurements and by the use of dynamic light scattering, laser Doppler velocimetry, and isothermal titration calorimetry. It has been shown that GA and BSA can form soluble and insoluble complexes depending on the solution pH and the mixing ratio and is a function of the net charge on the complex. Soluble complexes were obtained when the electrophoretic mobility was greater than ±1. 5 μm s(-1) V(-1) cm(-1). Changes in the value of the isoelectric point of the complexes with mixing ratio and isothermal titration calorimetric data indicated that complexes formed at pHs 3 and 4 consisted of ~60 BSA molecules for every GA molecule, while at pH 5 there were ~10 BSA molecules per GA molecule. Calorimetric studies also indicated that the interaction occurred in two stages at both pH 3 and pH 4, but that the nature of the interaction at these two pH values was significantly different. This was attributed to differences in the relative magnitude of the positive and negative charges on the BSA and GA, respectively, and possibly due to changes in the BSA conformation. The fact that there is an interaction at pH 5, which is above the isoelectric point of the BSA, is due to the interaction of the carboxylate groups on the GA with positive patches on the BSA or to the charge regulation of the protein-polysaccharide system brought about by changes in dissociation equilibria. Complexation is reduced as the ionic strength of the solvent increases and is prevented at a NaCl concentration of 120 mM.  相似文献   

5.
The role of protein-protein interactions in membrane separations of protein mixtures remains incompletely understood, largely due to the difficulty of characterizing protein self- and, especially, cross-association. Recently, a novel technique, cross-interaction chromatography, has been developed to measure weak protein cross-association in terms of the osmotic second virial cross-coefficient. In this work the relationship between protein cross-association and the sieving behavior of lysozyme in the presence of BSA has been investigated. Sieving coefficients were measured using a stirred diafiltration cell over a range of pH and ionic strength, and a striking correlation between the lysozyme sieving and second virial cross-coefficients for BSA/lysozyme mixtures has been found: when the protein cross-interactions are most attractive (negative second virial cross-coefficient), the lysozyme sieving coefficients are lowest, and vice versa. The correlation between the sieving and second virial cross-coefficients may be due to the physically similar environments in the chromatography and filtration experiments since one protein is passed through a concentrated region of the second protein either immobilized on the column or accumulated at the membrane surface, and the migration rate of the mobile protein in both cases is influenced by protein cross-association. This study represents the first time that molecular interactions in binary mixtures have been related directly to filtration behavior, and may provide a useful approach to optimize the separation of other binary protein mixtures.  相似文献   

6.
原位椭圆偏振术研究牛血清清蛋白在固/液界面的吸附   总被引:1,自引:0,他引:1  
用原位椭圆偏振术系统研究了硅片表面因素及缓冲液环境因素对牛血清清蛋白在固/液界面吸附的影响。在生理条件下,疏水表面与亲水表面相比BSA吸附量较大。随着硅片表面电荷密度增加,BSA吸附量增加。BSA吸附量当体溶液pH值等于BSA等电点时达到最大。而随着体溶液离子强度增加,BSA吸附量亦上升。实验结果提示:除了熵驱动作用之外,硅片表面与BSA分子及BSA分子之间的静电作用在BSA吸附中起着十分重要的作用。  相似文献   

7.
Properties of talin from chicken gizzard smooth muscle   总被引:9,自引:0,他引:9  
This paper describes the structural and biochemical characterization of talin, a protein localized to various cellular sites where bundles of actin filaments attach to the plasma membrane. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the protein has a molecular mass of 225,000 +/- 5,000 daltons. Hydrodynamic measurements at protein concentrations less than 0.72 mg/ml indicate a monomeric protein with a native molecular mass of 213,000 +/- 15,000 daltons. Sedimentation equilibrium experiments indicate self-association at protein concentrations of 0.72 mg/ml and higher. The data suggest that this self-association is a simple monomer:dimer equilibrium over the range of concentrations observed. At low protein concentrations where talin is a monomer, the Stokes radius and sedimentation coefficient vary with ionic strength. Under low ionic strength conditions (5-20 mM NaCl), talin has a Stokes radius of 6.5 nm and a sedimentation value of 9.4, suggesting an asymmetric globular molecule; whereas under high ionic strength conditions (200 mM NaCl), the Stokes radius increases to 7.7 nm and the sedimentation coefficient decreases to 8.8, suggesting a more elongated protein. This conformation change is confirmed by electron microscopy which reveals a more globular protein at low ionic strength which unfolds to become an elongated flexible molecule as the ionic strength is increased to physiological and higher levels. The amino acid composition of talin indicates a low level of aromatic residues, consistent with its relatively low extinction coefficient, talin has an isoelectric point between pH 6.7 and 6.8 based on isoelectric focusing. The detailed purification of talin is described.  相似文献   

8.
The concentration dependence of the diffusion coefficient of particles suspended in solution depends primarily on the occupied volume fraction and on repulsive and attractive forces. This dependency is expressed by the interaction parameter, which can be assessed experimentally by light scattering measurements and have been determined for the diffusion coefficient of BSA under different salt concentration conditions in the present work. The result shows that the diffusion coefficient of protein grows up with increasing protein concentration, and when the ionic strength turns up gradually the diffusion coefficient decreases with protein concentrations increasing. The concentration dependence of BSA diffusion coefficients is interpreted in the context of a two-body potential of mean force, which includes repulsive hard-sphere and Coulombic interactions and attractive dispersion. With the increase of ionic strength, Debye screening decreases, protein interaction changes from repulsion to attraction, and protein begins to aggregate. By means of the concentration dependence of BSA diffusion coefficients, one can obtain the parameters of protein interactions and can find that protein bears a net effective charge of –9.0 e and has a Hamaker constant of 2.8kBT. This work demonstrates that DLS is an effective technique of studying protein interactions.  相似文献   

9.
The influence of pH (2-9) and ionic strength (0-0.14 M NaCl) on the sol-gel transition of beta-lactoglobulin was investigated in order to determine the critical gel concentration (C0). The concentration necessary to form a gel near the isoelectric pH remains approximately constant (approximately 1% w/v) independently of the ionic strength. At other pH values, the higher the ionic strength is, the lower the protein concentration must be to form a gel. A theoretical model to relate the effect of the intensity and the range of electrostatic interactions on the critical concentration (C0) is proposed and fits reasonably with the experimental results.  相似文献   

10.
The M/G ratio, dyad and triad frequencies in the sodium alginate chain, were determined from 13C-nmr spectra. The interactions of sodium alginate in solution with the univalent cations K+ ion and Na+ ion have been investigated by viscometry and membrane osmometry. The dependencies of intrinsic viscosity, Huggins constant, and second virial coefficient on ionic strength were observed, and the maximums in reduced viscosity were obtained in low KCl and NaCl concentrations, respectively. These show that the electroviscous effects play an important role in polyelectrolyte solution, and the effect of the Na+ ion on aqueous solution of sodium alginate is greater than the K+ ion. The experimental observations are interpreted in terms of ion-pair formation with carboxyl groups of mannuronate and isolated guluronate residues and cooperation “egg-box” binding between polyguluronate chain sequence. The difference of interaction between univalent cations and alginate chains in solution is attributed to the ability of their binding with the polyion, which depends on the properties of ions itself. © 1998 John Wiley & Sons, Inc. Biopoly 46: 395–402, 1998  相似文献   

11.
The interactions of partially unfolded proteins provide insight into protein folding and protein aggregation. In this work, we studied partially unfolded hen egg lysozyme interactions in solutions containing up to 7 M guanidinium chloride (GdnHCl). The osmotic second virial coefficient (B(22)) of lysozyme was measured using static light scattering in GdnHCl aqueous solutions at 20 degrees C and pH 4.5. B(22) is positive in all solutions, indicating repulsive protein-protein interactions. At low GdnHCl concentrations, B(22) decreases with rising ionic strength: in the absence of GdnHCl, B(22) is 1.1 x 10(-3) mLmol/g(2), decreasing to 3.0 x 10(-5) mLmol/g(2) in the presence of 1 M GdnHCl. Lysozyme unfolds in solutions at GdnHCl concentrations higher than 3 M. Under such conditions, B(22) increases with ionic strength, reaching 8.0 x 10(-4) mLmol/g(2) at 6.5 M GdnHCl. Protein-protein hydrodynamic interactions were evaluated from concentration-dependent diffusivity measurements, obtained from dynamic light scattering. At moderate GdnHCl concentrations, lysozyme interparticle interactions are least repulsive and hydrodynamic interactions are least attractive. The lysozyme hydrodynamic radius was calculated from infinite-dilution diffusivity and did not change significantly during protein unfolding. Our results contribute toward better understanding of protein interactions of partially unfolded states in the presence of a denaturant; they may be helpful for the design of protein refolding processes that avoid protein aggregation.  相似文献   

12.
Using defatted and SH-blocked bovine serum albumin (BSA), the measurement of differential scanning calorimetry (d.s.c.) was performed in the range pH 3-11 and ionic strength 0.001-1 M. The shape of the d.s.c. curve was classified into four regimes: (i) the curve with no peak, (ii) that with a peak, (iii) that with a peak having a shoulder, and (iv) that with two peaks. The presence of two peaks was interpreted by the concept of 'heat-induced transition'. The BSA molecule is composed of two domains, thermodynamically independent owing to the formation of a crevice in BSA in a particular range of pH and ionic strength; this gives two peaks in the d.s.c. curve. The enthalpy (delta H) from the d.s.c. curve was plotted against pH and against the NaCl concentration. The value of delta H increased with the increase in the ionic strength in the pH range 5.6-9.0. The temperature of thermal denaturation (the temperature of the peak maximum, Td) was raised with the increase in the ionic strength in the pH range 4.5-9.0, but was lowered in the pH range 3.5-4.0. BSA was stabilized in the neutral-alkaline pH range by the presence of NaCl, but was destabilized in the acidic pH range.  相似文献   

13.
Although protein fractionation by selective membrane filtration has numerous potential applications in both the downstream processing of fermentation broths and the purification of plasma proteins, the selectivity for proteins with only moderately different molecular weights has generally been quite poor. We have obtained experimental data for the transport of bovine serum albumin (BSA) and immunoglobulins (IgG) through 100,000 and 300,000 molecular weight cutoff polyethersulfone membranes in a stirred ultrafiltration device at different solution pH and ionic strength. The selectivity was a complex function of the flux due to the simultaneous convective and diffusive solute transport through the membrane and the bulk mass transfer limitations in the stirred cell. Under phsioligical conditions (pH 7.0 and 0.15 M NaCI) the maximum selectivity for the BSA-IgG separation was only about 2.0 due primarily to the effects of protein adsorption. In contrast, BSA-IgG selectivities as high as 50 were obtained with the same membranes when the protein solution was at pH 4.8 and 0.0015 M NaCl. This enhanced selectivity was a direct result of the electrosatatic contributions to both bulk and membrane transport. The membrane selectivity could actually be reversed, with higher passage of the larger IgG molecules, by using a 300,000 molecular weight cutoff membrane at pH 7.4 and an ionic strength of 0.0015 M NaCl. These results clearly demonstrate that the effectiveness of selective protein filtration can be dramatically altered by appropriately controlling electrostatic interactions through changes in pH and/or ionic strength. (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
Abstract

A simple osmometer with nuclear filters (polymer films with pores of a preset diameter) were used to measure the osmotic pressure of Col El plasmid DNA solutions in the concentration range of 1–4 mg/ml DNA. Linear and open circular DNA forms proved to have the same osmotic pressure within the experimental accuracy. The results of the measurements were used for calculating the second virial coefficient A 2 of the solution of DNA segments and the effective chain diameter d eff in the ionic strength range of 10?2-0.1 M, As the ionic strength is lowered from 0.1 to 10?2 M the effective diameter of DNA increases from 80 to 220 A. The results are in rather good agreement with theory and with other experimental data.  相似文献   

15.
The effects of ammonium sulphate concentration on the osmotic second virial coefficient (BAA/MA) for equine serum albumin (pH 5.6, 20 degrees C) have been examined by sedimentation equilibrium. After an initial steep decrease with increasing ammonium sulphate concentration, BAA/MA assumes an essentially concentration-independent magnitude of 8-9 ml/g. Such behaviour conforms with the statistical-mechanical prediction that a sufficient increase in ionic strength should effectively eliminate the contributions of charge interactions to BAA/MA but have no effect on the covolume contribution (8.4 ml/g for serum albumin). A similar situation is shown to apply to published sedimentation equilibrium data for lysozyme (pH 4.5). Although termed osmotic second virial coefficients and designated as such (B22), the negative values obtained in published light scattering studies of both systems have been described incorrectly because of the concomitant inclusion of the protein-salt contribution to thermodynamic nonideality of the protein. Those negative values are still valid predictors of conditions conducive to crystal growth inasmuch as they do reflect situations in which there is net attraction between protein molecules. However, the source of attraction responsible for the negative virial coefficient stems from the protein-salt rather than the protein-protein contribution, which is necessarily positive.  相似文献   

16.
The effects of pH and electrolyte concentration on protein-protein interactions in lysozyme and chymotrypsinogen solutions were investigated by static light scattering (SLS) and small-angle neutron scattering (SANS). Very good agreement between the values of the virial coefficients measured by SLS and SANS was obtained without use of adjustable parameters. At low electrolyte concentration, the virial coefficients depend strongly on pH and change from positive to negative as the pH increases. All coefficients at high salt concentration are slightly negative and depend weakly on pH. For lysozyme, the coefficients always decrease with increasing electrolyte concentration. However, for chymotrypsinogen there is a cross-over point around pH 5.2, above which the virial coefficients decrease with increasing ionic strength, indicating the presence of attractive electrostatic interactions. The data are in agreement with Derjaguin-Landau-Verwey-Overbeek (DLVO)-type modeling, accounting for the repulsive and attractive electrostatic, van der Waals, and excluded volume interactions of equivalent colloid spheres. This model, however, is unable to resolve the complex short-ranged orientational interactions. The results of protein precipitation and crystallization experiments are in qualitative correlation with the patterns of the virial coefficients and demonstrate that interaction mapping could help outline new crystallization regions.  相似文献   

17.
Emulsions of 0.1 wt % corn oil-in-water containing oil droplets coated by beta-lactoglobulin (0.009 wt % beta-Lg, 5 mM phosphate buffer, pH 7.0) were prepared in the absence and presence of sodium alginate (0 or 0.004 wt %). The pH (3-7) and ionic strength (0-250 mM NaCl) of these emulsions were adjusted, and the particle charge, particle size, and creaming stability were measured. Alginate adsorbed to the beta-Lg-coated droplets from pH 3 to 6, which was attributed to electrostatic attraction between the anionic polymer and cationic patches on the droplet surfaces. Droplets coated by beta-Lg-alginate had better stability to flocculation than those coated by beta-Lg alone, especially around the isoelectric point of the adsorbed proteins and at low ionic strengths (< 100 mM NaCl). At pH 5, alginate molecules desorbed from the droplet surfaces at high salt concentrations due to weakening of the electrostatic attraction.  相似文献   

18.
A new method of isolating nuclei and chromosomes of salivary gland cells is described. — The influence of ionic strength and pH of the medium on the state of decondensation of chromosomal bands is studied. In the isolation medium (a modified Ringer solution), all the bands are in a condensed state; as the ionic strength is increased the bands decondense. This reaction of the bands to increasing ionic strength is dependent on the pH which determines: 1) the range of ionic strengths which causes decondensation of the bands; i.e., the lower the pH, the higher the ionic strength is required for decondensation (at pH 7.3, 150–350 mM NaCl, at pH 4.3, 500–800 mM NaCl), and 2) the extent of structural changes caused by increasing ionic strength; that is, at neutral pH the bands become diffuse (“fading”) and at moderate acidic pH (optimum 4.3) the bands unravel to yield pufflike structures (“swelling”). — All ion species tested induce decondensation of bands, but each one is effective differently; specifically, Mg+ is more effective than Na+ and K+, and ClO4 ? is more effective than Cl?. — “Swelling” as induced at pH 4.3 by high ionic strength cannot be reversed by a mere lowering of ionic strength (to 150 mM NaCl) and a subsequent raise of pH (to 7.5); it can be reversed only by an addition of histones. The various histone fractions act differently on the recondensation process. — “Swelling” is correlated with an increase in template activity as evidenced by an increased incorporation of 3H-UTP, measured in the presence of ATP, CTP, GTP and exogeneous RNA polymerase. — The individual bands differ in their sensitivity to an increasing ionic strength. This differential sensitivity expresses itself only if one of the following conditions is met: 1) a moderately acidic pH (optimum 4.3) or 2) the presence of divalent cations at neutral pH. — In a few bands the sensitivity to an increasing ionic strength is dependent on the ionic species (Na+, K+, Mg++ and Ca++). — It is attempted to explain the above reactions on the basis of the physico-chemical properties of chromosomes.  相似文献   

19.
20.
Protein phase behavior is involved in numerous aspects of downstream processing, either by design as in crystallization or precipitation processes, or as an undesired effect, such as aggregation. This work explores the phase behavior of eight monoclonal antibodies (mAbs) that exhibit liquid–liquid separation, aggregation, gelation, and crystallization. The phase behavior has been studied systematically as a function of a number of factors, including solution composition and pH, in order to explore the degree of variability among different antibodies. Comparisons of the locations of phase boundaries show consistent trends as a function of solution composition; however, changing the solution pH has different effects on each of the antibodies studied. Furthermore, the types of dense phases formed varied among the antibodies. Protein–protein interactions, as reflected by values of the osmotic second virial coefficient, are used to correlate the phase behavior. The primary findings are that values of the osmotic second virial coefficient are useful for correlating phase boundary locations, though there is appreciable variability among the antibodies in the apparent strengths of the intrinsic protein–protein attraction manifested. However, the osmotic second virial coefficient does not provide a clear basis to predict the type of dense phase likely to result under a given set of solution conditions. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:268–276, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号